Bioanalytical Reviews

, Volume 4, Issue 2–4, pp 97–114 | Cite as

Sensing with electro-switchable biosurfaces

  • Ulrich Rant


The conformation of charged molecules tethered to conducting substrates can be controlled efficiently through the application of external voltages. Biomolecules like DNA or oligopeptides can be forced to stretch away from—or fold onto—surfaces biased at moderate potentials of merely hundreds of millivolts. These externally controlled conformation changes can be used to switch the biological function of molecular monolayers on and off, by revealing or concealing molecular recognition sites at will. Moreover, the electrical actuation of biomolecular surface probes bears great potential as a novel, label-free, yet highly sensitive measurement modality for the analysis of molecular interactions. The binding of target molecules to an oscillating probe layer significantly alters the layer’s switching behavior in terms of the conformation switching amplitude and, most remarkably, with respect to the molecular switching dynamics. Analyzing the switching response of target–probe complexes from the low- to the high-frequency regime reveals a wealth of previously inaccessible information. Besides “classical” interaction parameters like binding affinities and kinetic rate constants, information on the size, shape, bending flexibility, and elasticity of the target molecule may be obtained in a single assay. This review describes the advent of electrically switchable biosurfaces, focusing on DNA monolayers. The preparation of self-assembled switchable oligonucleotide monolayers and their electrical interactions with charged substrates are highlighted. Special attention is paid to the merits of evaluating the dynamic response of charged biolayers which are operated at high driving frequencies. Several applications of biosensors based on electrically manipulated molecules are exemplified. It is emphasized that the electrical actuation of biomolecules bears many advantages over passive sensor surfaces.


Polymer Brush Electrical Actuation Electrical Interaction Switching Response Charged Substrate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Nandivada H, Ross AM, Lahann J (2010) Stimuli-responsive monolayers for biotechnology. Prog Polym Sci 35(1–2):141–154. doi: 10.1016/j.progpolymsci.2009.11.001 CrossRefGoogle Scholar
  2. 2.
    Mendes PM (2008) Stimuli-responsive surfaces for bio-applications. Chem Soc Rev 37(11):2512–2529. doi: 10.1039/b714635n CrossRefGoogle Scholar
  3. 3.
    Wong IY, Almquist BD, Melosh NA (2010) Dynamic actuation using nano-bio interfaces. Materials Today 13(6):14–22CrossRefGoogle Scholar
  4. 4.
    Hook AL, Voelcker NH, Thissen H (2009) Patterned and switchable surfaces for biomolecular manipulation. Acta Biomaterialia 5(7):2350–2370. doi: 10.1016/j.actbio.2009.03.040 CrossRefGoogle Scholar
  5. 5.
    Liu Y, Mu L, Liu BH, Kong JL (2005) Controlled switchable surface. Chem Eur J 11(9):2622–2631. doi: 10.1002/chem.200400931 CrossRefGoogle Scholar
  6. 6.
    Lahann J, Mitragotri S, Tran TN, Kaido H, Sundaram J, Choi IS et al (2003) A reversibly switching surface. Science 299(5605):371–374CrossRefGoogle Scholar
  7. 7.
    Kimura-Suda H, Petrovykh DY, Tarlov MJ, Whitman LJ (2003) Base-dependent competitive adsorption of single-stranded DNA on gold. J Am Chem Soc 125:9014–9015CrossRefGoogle Scholar
  8. 8.
    Herne TM, Tarlov MJ (1997) Characterization of DNA probes immobilized on gold surfaces. J Am Chem Soc 119:8916–8920CrossRefGoogle Scholar
  9. 9.
    Petrovykh DY, Kimura-Suda H, Whitman LJ, Tarlov MJ (2003) Quantitative analysis and characterization of DNA immobilized on gold. J Am Chem Soc 125:5219–5226CrossRefGoogle Scholar
  10. 10.
    Lee C-Y, Gong P, Harbers GM, Grainger DW, Castner DG, Gamble LJ (2006) Surface coverage and structure of mixed DNA/alkylthiol monolayers on gold: characterization by XPS, NEXAFS, and fluorescence intensity measurements. Anal Chem 78:3316–3325CrossRefGoogle Scholar
  11. 11.
    Lee CY, Nguyen PCT, Grainger DW, Gamble LJ, Castner DG (2007) Structure and DNA hybridization properties of mixed nucleic acid/maleimide-ethylene glycol monolayers. Anal Chem 79(12):4390–4400. doi: 10.1021/ac0703395 CrossRefGoogle Scholar
  12. 12.
    Petrovykh DY, Kimura-Suda H, Tarlov MJ, Whitman LJ (2004) Quantitative characterization of DNA films by X-ray photoelectron spectroscopy. Langmuir 20:429–440CrossRefGoogle Scholar
  13. 13.
    Levicky R, Herne TM, Tarlov MJ, Satija SK (1998) Using self-assembly to control the structure of DNA monolayers on gold: a neutron reflectivity study. J Am Chem Soc 120:9787–9792CrossRefGoogle Scholar
  14. 14.
    Peterlinz KA, Georgiadis RM, Herne TM, Tarlov MJ (1997) Observation of hybridization and dehybridization of thiol-tethered DNA using two-color surface plasmon resonance spectroscopy. J Am Chem Soc 119(14):3401–3402CrossRefGoogle Scholar
  15. 15.
    Georgiadis R, Peterlinz KP, Peterson AW (2000) Quantitative measurements and modeling of kinetics in nucleic acid monolayer films using SPR spectroscopy. J Am Chem Soc 122:3166–3173CrossRefGoogle Scholar
  16. 16.
    Peterlinz KA, Georgiadis R (1996) In situ kinetics of self-assembly by surface plasmon resonance spectroscopy. Langmuir 12(20):4731–4740CrossRefGoogle Scholar
  17. 17.
    Wolf LK, Gao Y, Georgiadis RM (2004) Sequence-dependent DNA immobilization: specific versus nonspecific contributions. Langmuir 20(8):3357–3361. doi: 10.1021/la036125 CrossRefGoogle Scholar
  18. 18.
    Rant U, Arinaga K, Fujita S, Yokoyama N, Abstreiter G, Tornow M (2004) Structural properties of oligonucleotide monolayers on gold surfaces probed by fluorescence investigations. Langmuir 20(23):10086–10092CrossRefGoogle Scholar
  19. 19.
    Murphy JN, Cheng AKH, Yu HZ, Bizzotto D (2009) On the nature of DNA self-assembled monolayers on Au: measuring surface heterogeneity with electrochemical in situ fluorescence microscopy. J Am Chem Soc 131(11):4042–4050. doi: 10.1021/ja808696p CrossRefGoogle Scholar
  20. 20.
    Arinaga K, Rant U, Tornow M, Fujita S, Abstreiter G, Yokoyama N (2006) The role of surface charging during the coadsorption of mercaptohexanol to DNA layers on gold: direct observation of desorption and layer reorientation. Langmuir 22(13):5560–5562. doi: 10.1021/la060324m CrossRefGoogle Scholar
  21. 21.
    Kaiser W, Rant U (2010) Conformations of end-tethered DNA molecules on gold surfaces: influences of applied electric potential, electrolyte screening, and temperature. Journal of the American Chemical Society 132(23):7935–7945. doi: 10.1021/ja908727d CrossRefGoogle Scholar
  22. 22.
    Moiseev L, Ünlü MS, Swan AK, Goldberg BB, Cantor CR (2006) DNA conformation on surfaces measured by fluorescence self-interference. Proc Nat Acad Sci 103(8):2623–2628CrossRefGoogle Scholar
  23. 23.
    Wang K, Zangmeister RA, Levicky R (2009) Equilibrium electrostatics of responsive polyelectrolyte monolayers. J Am Chem Soc 131(1):318–326. doi: 10.1021/ja807435q CrossRefGoogle Scholar
  24. 24.
    Steel AB, Herne TM, Tarlov MJ (1998) Electrochemical quantitation of DNA immobilized on gold. Anal Chem 70:4670–4677CrossRefGoogle Scholar
  25. 25.
    Carrascosa LG, Martinez L, Huttel Y, Roman E, Lechuga LM (2010) Understanding the role of thiol and disulfide self-assembled DNA receptor monolayers for biosensing applications. Eur Biophys J Biophys Lett 39(10):1433–1444. doi: 10.1007/s00249- 010-0599-6 CrossRefGoogle Scholar
  26. 26.
    Su XD, Wu YJ, Robelek R, Knoll W (2005) Surface plasmon resonance spectroscopy and quartz crystal microbalance study of streptavidin film structure effects on biotinylated DNA assembly and target DNA hybridization. Langmuir 21(1):348–353. doi: 10.1021/la047997u CrossRefGoogle Scholar
  27. 27.
    Nelson BP, Grimsrud TE, Liles MR, Goodman RM, Corn RM (2001) Surface plasmon resonance imaging measurements of DNA and RNA hybridization adsorption onto DNA microarrays. Anal Chem 73(1):1–7CrossRefGoogle Scholar
  28. 28.
    Rant U, Arinaga K, Fujita S, Yokoyama N, Abstreiter G, Tornow M (2004) Dynamic electrical switching of DNA layers on a metal surface. Nano Letters 4(12):2441–2445CrossRefGoogle Scholar
  29. 29.
    Ricci F, Lai RY, Heeger AJ, Plaxco KW, Sumner JJ (2007) Effect of molecular crowding on the response of an electrochemical DNA sensor. Langmuir 23(12):6827–6834. doi: 10.1021/la0700328r CrossRefGoogle Scholar
  30. 30.
    Opdahl A, Petrovykh DY, Kimura-Suda H, Tarlov MJ, Whitman LJ (2007) Independent control of grafting density and conformation of single-stranded DNA brushes. Proc Natl Acad Sci India USA 104(1):9–14. doi: 10.1073/pnas.0608568103 CrossRefGoogle Scholar
  31. 31.
    Wang J, Rivas G, Jiang MA, Zhang XJ (1999) Electrochemically induced release of DNA from gold ultramicroelectrodes. Langmuir 15(19):6541–6545CrossRefGoogle Scholar
  32. 32.
    Arinaga K, Rant U, Knezevic J, Pringsheim E, Tornow M, Fujita S et al (2007) Controlling the surface density of DNA on gold by electrically induced desorption. Biosens Bioelectron 23(3):326–331. doi: 10.1016/j.bios.2007.04.012 CrossRefGoogle Scholar
  33. 33.
    Takeishi S, Rant U, Fujiwara T, Buchholz K, Usuki T, Arinaga K et al (2004) Observation of electrostatically released DNA from gold electrodes with controlled threshold voltages. J Chem Phys 120(12):5501–5504CrossRefGoogle Scholar
  34. 34.
    Biagiotti V, Porchetta A, Desiderati S, Plaxco KW, Palleschi G, Ricci F (2012) Probe accessibility effects on the performance of electrochemical biosensors employing DNA monolayers. Analytical and Bioanalytical Chemistry 402(1):413–421. doi: 10.1007/s00216-011-5361-0 CrossRefGoogle Scholar
  35. 35.
    Gong P, Lee CY, Gamble LJ, Castner DG, Grainger DW (2006) Hybridization behavior ofmixed DNA/alkylthiol monolayers on gold: characterization by surface plasmon resonance and P-32 radiometric assay. Anal Chem 78:3326–3334. doi: 10.1021/ac052138b CrossRefGoogle Scholar
  36. 36.
    Wong IY, Melosh NA (2010) An electrostatic model for DNA surface hybridization. Biophys J 98(12):2954–2963. doi: 10.1016/j.bpj.2010.03.017 CrossRefGoogle Scholar
  37. 37.
    Yu F, Yao DF, Knoll W (2004) Oligonucleotide hybridization studied by a surface plasmon diffraction sensor (SPDS). Nucleic Acids Res 32(9):doi:10.1093/nar/gnh067CrossRefGoogle Scholar
  38. 38.
    Gong P, Levicky R (2008) DNA surface hybridization regimes. Proc Natl Acad Sci U S A 105(14):5301–5306. doi: 10.1073/pnas.0709416105 CrossRefGoogle Scholar
  39. 39.
    Irving D, Gong P, Levicky R (2010) DNA surface hybridization: comparison of theory and experiment. J Phys Chem B 114(22):7631–7640. doi: 10.1021/jp100860z CrossRefGoogle Scholar
  40. 40.
    Kelley SO, Barton JK, Jackson NM, McPherson LD, Potter AB, Spain EM et al (1998) Orienting DNA helices on gold using applied electric fields. Langmuir 14(24):6781–6784CrossRefGoogle Scholar
  41. 41.
    Zhang Z-L, Pang D-W, Zhang R-Y (2002) Investigation of DNA orientation on gold by EC-STM. Bioconjugate Chem 13:104–109CrossRefGoogle Scholar
  42. 42.
    Wackerbarth H, Grubb M, Zhang J, Hansen AG, Ulstrup J (2004) Dynamics of ordered-domain formation of DNA fragments on Au(111) with molecluar resolution. Angew Chem Int Ed 43:198–203CrossRefGoogle Scholar
  43. 43.
    Grubb M, Wackerbarth H, Ulstrup J (2006) Identification of single-strand DNA by in situ scanning tunneling microscopy. J Am Chem Soc 128(24):7734–7735. doi: 10.1021/ja061747d CrossRefGoogle Scholar
  44. 44.
    Li YC, Li PCH, Parameswaran M, Yu HZ (2008) Inkjet printed electrode arrays for potential modulation of DNA self-assembled monolayers on gold. Anal Chem 80(22):8814–8821. doi: 10.1021/ac801420h CrossRefGoogle Scholar
  45. 45.
    Huang SX, Chen Y (2008) Ultrasensitive fluorescence detection of single protein molecules manipulated electrically on Au nanowire. Nano Lett 8(9):2829–2833. doi: 10.1021/nl801429p CrossRefGoogle Scholar
  46. 46.
    Chance RR, Prock A, Silbey R (1978) Molecular fluorescence and energy transfer near interfaces. Adv Chem Phys 37:1–65CrossRefGoogle Scholar
  47. 47.
    Yang XH, Wang Q, Wang KM, Tan WH, Yao J, Li HM (2006) Electrical switching of DNA monolayers investigated by surface plasmon resonance. Langmuir 22(13):5654–5659. doi: 10.1021/la052907m CrossRefGoogle Scholar
  48. 48.
    Mahajan S, Richardson J, Brown T, Bartlett PN (2008) SERS-melting: a new method for discriminating mutations in DNA sequences. J Am Chem Soc 130(46):15589–15601. doi: 10.1021/ja805517q CrossRefGoogle Scholar
  49. 49.
    Rant U, Arinaga K, Fujita S, Yokoyama N, Abstreiter G, Tornow M (2006) Electrical manipulation of oligonucleotides grafted to charged surfaces. Org Biomol Chem 4(18):3448–3455. doi: 10.1039/b605712h CrossRefGoogle Scholar
  50. 50.
    Erdmann M, David R, Fornof A, Gaub HE (2010) Electrically controlled DNA adhesion. Nat Nanotechnol 5(2):154–159. doi: 10.1038/nnano.2009.377 CrossRefGoogle Scholar
  51. 51.
    Zhou F, Biesheuvel PM, Chol EY, Shu W, Poetes R, Steiner U et al (2008) Polyelectrolyte brush amplified electroactuation of microcantilevers. Nano Letters 8(2):725–730. doi: 10.1021/nl073157z CrossRefGoogle Scholar
  52. 52.
    Meng FB, Liu YX, Liu L, Li GX (2009) Conformational transitions of immobilized DNA chains driven by pH with electrochemical output. J Phys Chem B 113(4):894–896. doi: 10.1021/jp806268z CrossRefGoogle Scholar
  53. 53.
    Germishuizen WA, Walti C, Wirtz R, Johnston MB, Pepper M, Davies AG et al (2003) Selective dielectrophoretic manipulation of surface-immobilized DNA molecules. Nanotechnology 14(8):896–902CrossRefGoogle Scholar
  54. 54.
    Germishuizen WA, Tosch P, Middelberg APJ, Walti C, Davies AG, Wirtz R et al (2005) Influence of alternating current electrokinetic forces and torque on the elongation of immobilized DNA. J Appl Phys 97(1):doi:10.1063/1.1825627CrossRefGoogle Scholar
  55. 55.
    Wang J (2001) On-demand electrochemical release of nucleic acids. Electroanalysis 13(8–9):635–638CrossRefGoogle Scholar
  56. 56.
    Rivera-Gandia J, Georgiadis RM, Cabrera CR (2008) In-situ fluorescence spectroscopy of self- assembled monolayers of HS-(CH2)(n)-fluorescein and HS-(CH2)(6)-poly(dT)(18)-fluorescein at gold electrodes under cyclic voltammetric conditions. J Electroanal Chem 621(1):75–82. doi: 10.1016/j.jelechem.2008.04.028 CrossRefGoogle Scholar
  57. 57.
    Netz RR, Andelman D (2003) Neutral and charged polymers at interfaces. Phys Rep 380:1–95, and references thereinCrossRefGoogle Scholar
  58. 58.
    Dobrynin AV, Rubinstein M (2005) Theory of polyelectrolytes in solutions and at surfaces. Prog Polym Sci 30:1049–1118. doi: 10.1016/j.progpolymsci.2005.07.006 CrossRefGoogle Scholar
  59. 59.
    Rant U, Arinaga K, Tornow M, Kim YW, Netz RR, Fujita S et al (2006) Dissimilar kinetic behavior of electrically manipulated single- and double-stranded DNA tethered to a gold surface. Biophys J 90(10):3666–3671. doi: 10.1529/biophysj.105.078857 CrossRefGoogle Scholar
  60. 60.
    Wong KY, Pettitt BM (2004) Orientation of DNA on a surface from simulation. Biopolymers 73(5):570–578. doi: 10.1002/bip. 20004 CrossRefGoogle Scholar
  61. 61.
    Crozier PS, Stevens MJ (2003) Simulations of single grafted polyelectrolyte chains: ssDNA and dsDNA. J Chem Phys 118(8):3855–3860. doi: 10.1063/1.1540098 CrossRefGoogle Scholar
  62. 62.
    Sendner C, Kim YW, Rant U, Arinaga K, Tornow M, Netz RR (2006) Dynamics of end grafted DNA molecules and possible biosensor applications. Physica Status Solidi a-Applications and Materials Science 203(14):3476–3491. doi: 10.1002/pssa.200622444 CrossRefGoogle Scholar
  63. 63.
    Vainrub A, Pettitt BM (2000) Thermodynamics of association to a molecule immobilized in an electric double layer. Chem Phys Lett 323(1–2):160–166CrossRefGoogle Scholar
  64. 64.
    Vainrub A, Pettitt BM (2003) Surface electrostatic effects in oligonucleotide microarrays: control and optimization of binding thermodynamics. Biopolymers 68(2):265–270. doi: 10.1002/bip. 10271 CrossRefGoogle Scholar
  65. 65.
    Pei Y, Ma J (2005) Electric field induced switching behaviors of monolayer-modified silicon surfaces: surface designs and molecular dynamics simulations. J Am Chem Soc 127(18):6802–6813. doi: 10.1021/ja045506m CrossRefGoogle Scholar
  66. 66.
    Rant U, Arinaga K, Scherer S, Pringsheim E, Fujita S, Yokoyama N et al (2007) Switchable DNA interfaces for the highly sensitive detection of label-free DNA targets. Proc Natl Acad Sci U S A 104(44):17364–17369. doi: 10.1073/pnas.0703974104 CrossRefGoogle Scholar
  67. 67.
    Rant U, Pringsheim E, Kaiser W, Arinaga K, Knezevic J, Tornow M et al (2009) Detection and size analysis of proteins with switchable DNA layers. Nano Lett 9(4):1290–1295. doi: 10.1021/nl8026789 CrossRefGoogle Scholar
  68. 68.
    Wang Y, Zocchi G (2010) Elasticity of globular proteins measured from the ac susceptibility. Phys Rev Lett 105(23):doi:10.1103/PhysRevLett.105.238104CrossRefGoogle Scholar
  69. 69.
    Genereux JC, Barton JK (2010) Mechanisms for DNA charge transport. Chem Rev 110(3):1642–1662. doi: 10.1021/cr900228f CrossRefGoogle Scholar
  70. 70.
    Kelley SO, Boon EM, Barton JK, Jackson NM, Hill MG (1999) Single-base mismatch detection based on charge transduction through DNA. Nucleic Acids Res 27(24):4830–4837. doi: 10.1093/nar/27.24.4830 CrossRefGoogle Scholar
  71. 71.
    Gorodetsky AA, Buzzeo MC, Barton JK (2008) DNA-mediated electrochemistry. Bioconjugate Chem 19(12):2285–2296. doi: 10.1021/bc8003149 CrossRefGoogle Scholar
  72. 72.
    Wierzbinski E, Arndt J, Hammond W, Slowinski K (2006) In situ electrochemical distance tunneling spectroscopy of ds-DNA molecules. Langmuir 22(6):2426–2429. doi: 10.1021/la053224+ CrossRefGoogle Scholar
  73. 73.
    Anne A, Bouchardon A, Moiroux J (2003) 3′-ferrocene-labeled oligonucleotide chains end- tethered to gold electrode surfaces: novel model systems for exploring flexibility of short DNA using cyclic voltammetry. J Am Chem Soc 125(5):1112–1113CrossRefGoogle Scholar
  74. 74.
    Fan C, Plaxco KW, Heeger AJ (2003) Electrochemical interrogation of conformational changes as a reagentless method for the sequence-specific detection of DNA. Proc Nat Acad Sci 100(16):9134–9137CrossRefGoogle Scholar
  75. 75.
    Farjami E, Clima L, Gothelf K, Ferapontova EE (2011) “Off On” electrochemical hairpin-DNA-based genosensor for cancer diagnostics. Anal Chem 83(5):1594–1602. doi: 10.1021/ac1032929 CrossRefGoogle Scholar
  76. 76.
    Lubin AA, Plaxco KW (2010) Folding-based electrochemical biosensors: the case for responsive nucleic acid architectures. Accounts Chem Res 43(4):496–505. doi: 10.1021/ar900165x CrossRefGoogle Scholar
  77. 77.
    Anne A, Demaille C (2006) Dynamics of electron transport by elastic bending of short DNA duplexes. Experimental study and quantitative modeling of the cyclic voltammetric behavior of 3′-ferrocenyl DNA end-grafted on gold. J Am Chem Soc 128(2):542–557. doi: 10.1021/ja055112a CrossRefGoogle Scholar
  78. 78.
    Huesken N, Gebala M, La Mantia F, Schuhmann W, Metzler-Nolte N (2011) Mechanistic studies of Fc-PNA(.DNA) surface dynamics based on the kinetics of electron-transfer processes. Chem Eur J 17(35):9678–9690. doi: 10.1002/chem.201003764 CrossRefGoogle Scholar
  79. 79.
    Wang K, Goyer C, Anne A, Demaille C (2007) Exploring the motional dynamics of end-grafted DNA oligonucleotides by in situ electrochemical atomic force microscopy. J Phys Chem B 111(21):6051–6058. doi: 10.1021/jp070432x CrossRefGoogle Scholar
  80. 80.
    Anne A, Demaille C (2008) Electron transport by molecular motion of redox-DNA strands: unexpectedly slow rotational dynamics of 20-mer ds-DNA chains end-grafted onto surfaces via C-6 linkers. J Am Chem Soc 130(30):9812–9823. doi: 10.1021/ja801074m CrossRefGoogle Scholar
  81. 81.
    Uzawa T, Cheng RR, White RJ, Makarov DE, Plaxco KW (2010) A mechanistic study of electron transfer from the distal termini of electrode-bound, single-stranded DNAs. J Am Chem Soc 132(45):16120–16126. doi: 10.1021/ja106345d CrossRefGoogle Scholar
  82. 82.
    Edman CF, Raymond DE, Wu DJ, Tu E, Sosnowski RG, Butler WF et al (1997) Electric field directed nucleic acid hybridization on microchips. Nucl Acids Res 25(24):4907–4914CrossRefGoogle Scholar
  83. 83.
    Heaton RJ, Peterson AW, Georgiadis RM (2001) Electrostatic surface plasmon resonance: direct electric field-induced hybridization and denaturation in monolayer nucleic acid films and label-free discrimination of base mismatches. Proc Natl Acad Sci U S A 98(7):3701–3704CrossRefGoogle Scholar
  84. 84.
    Wong IY, Melosh NA (2009) Directed hybridization and melting of DNA linkers using counterion-screened electric fields. Nano Lett 9(10):3521–3526. doi: 10.1021/nl901710n CrossRefGoogle Scholar
  85. 85.
    Sosnowski RG, Tu E, Butler WF, O’Connell JP, Heller MJ (1997) Rapid determination of single base mismatch mutations in DNA hybrids by direct electric field control. Proc Nat Acad Sci 94:1119–1123CrossRefGoogle Scholar
  86. 86.
    Gurtner C, Tu E, Jamshidi N, Haigis RW, Onofrey TJ, Edman CF et al (2002) Microelectronic array devices and techniques for electric field enhanced DNA hybridization in low-conductance buffers. Electrophoresis 23(10):1543–1550. doi: 10.1002/1522-2683(200205)23:10<1543::aid-elps1543>;2-# CrossRefGoogle Scholar
  87. 87.
    Rant U, Arinaga K, Fujita S, Yokoyama N, Abstreiter G, Tornow M (2004) Dynamic electrical switching of DNA layers on a metal surface. Nano Letters 4(12):2441–2445. doi: 10.1021/nl0484494. CrossRefGoogle Scholar
  88. 88.
    Spuhler PS, Knezevic J, Yalcin A, Bao QY, Pringsheim E, Droge P et al (2010) Platform for in situ real-time measurement of protein-induced conformational changes of DNA. Proc Natl Acad Sci U S A 107(4):1397–1401. doi: 10.1073/pnas.0912182107 CrossRefGoogle Scholar
  89. 89.
    Yeung CL, Iqbal P, Allan M, Lashkor M, Preece JA, Mendes PM (2010) Tuning specific biomolecular interactions using electro-switchable oligopeptide surfaces. Adv Funct Mater 20(16):2657–2663. doi: 10.1002/adfm.201000411 CrossRefGoogle Scholar
  90. 90.
    Liu Y, Mu L, Liu BH, Zhang S, Yang PY, Kong JL (2004) Controlled protein assembly on a switchable surface. Chem Commun 10:1194–1195. doi: 10.1039/b400776j CrossRefGoogle Scholar
  91. 91.
    Wackerbarth H, Grubb M, Zhang J, Hansen AG, Ulstrup J (2004) Long-range order of organized oligonucleotide monolayers on Au(111) electrodes. Langmuir 20:1647–1655CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 2012

Authors and Affiliations

  1. 1.Chemistry DepartmentTechnische Universität MünchenGarchingGermany
  2. 2.Walter Schottky InstituteTechnische Universität MünchenGarchingGermany

Personalised recommendations