Advertisement

Bioanalytical Reviews

, Volume 4, Issue 2–4, pp 55–74 | Cite as

Measurement of oxidatively generated base damage to nucleic acids in cells: facts and artifacts

  • Jean CadetEmail author
  • Thierry Douki
  • Jean-Luc Ravanat
  • J. Richard Wagner
Article

Abstract

The search for DNA biomarkers of oxidative stress has been hampered for several decades by the lack of relevant information on base oxidation products and the challenging issue of measuring low amounts of lesions, typically a few modifications within the range 106–108 normal bases. In addition and this was ignored for a long time, there is a risk of artifactual oxidation of overwhelming nucleobases during DNA extraction and subsequent workup that has led to overestimation of some base damage up to 2–3 orders of magnitude. The main aim of the survey is to critically review the available methods that have been developed for measuring oxidatively generated base damage in nuclear and mitochondrial DNA. Among the chromatographic methods, high-performance liquid chromatography associated with tandem mass spectrometry (HPLC–MS/MS) is the most accurate and versatile approach whereas HPLC–electrochemical detection (ECD) is restricted to electrochemically active modifications. These methods allow measuring several single oxidized pyrimidine and purine bases, tandem base lesions and interstrand DNA cross-links in nuclear DNA. As complementary analytical tools, enzymatic methods that associate DNA repair enzymes with either the alkaline comet assay or the alkaline elution technique are suitable for assessing low variations in the level of different classes of oxidatively generated DNA lesions. Most of the immunoassays suffer from a lack of specificity due to the occurrence of cross-reactivity with overwhelming normal bases. One major exception concerns the immunodetection of 5-hydroxymethylcytosine, produced in a relatively high yield as an epigenetic DNA modification. HPLC–MS/MS is now recognized as the gold standard for measuring oxidized bases and nucleosides in human fluids such as urine, saliva, and plasma.

Keywords

Oxidized nucleosides Chromatographic assays Immunodetection Enzymatic assays 

References

  1. 1.
    Elahi MM, Kong YX, Matata BM (2009) Oxidative stress as a mediator of cardiovascular disease. Oxid Med Cell Longev 2:259–269CrossRefGoogle Scholar
  2. 2.
    Di Lisa F, Kaludercic N, Carpi A, Menabò R, Giorgio M (2009) Mitochondria and vascular pathology. Pharmacol Rep 61:123–130Google Scholar
  3. 3.
    Murphy PM (2009) How mitochondria produce reactive oxygen species? Biochem J 417:1–13CrossRefGoogle Scholar
  4. 4.
    Powers SK, Jackson MJ (2008) Exercise-induced oxidative stress: cellular mechanisms and impact on muscle force production. Physiol Rev 88:1243–1276CrossRefGoogle Scholar
  5. 5.
    Neubauer O, Reichhold S, Nersesyan A, Köning D, Wagner K-H (2008) Exercise-induced DNA damage: is there a relationship with inflammatory response? Exerc Immunol Rev 14:51–72Google Scholar
  6. 6.
    Romano AD, Serviddio G, de Matthaeis A, Bellanti F, Vendemiale G (2010) Oxidative stress and aging. J Nephrol 23(Suppl 15):S29–S36Google Scholar
  7. 7.
    Allen CL, Bayraktutan U (2009) Oxidative stress and its role in the pathogenesis of ischaemic stroke. Int J Stroke 4:461–470CrossRefGoogle Scholar
  8. 8.
    Monteiro R, Azevedo I (2010) Chronic inflammation in obesity and the metabolic syndrome. Mediators Inflamm 2010:1–10CrossRefGoogle Scholar
  9. 9.
    Takayanagi R, Inoguchi T, Ohnaka K (2011) Clinical and experimental evidence for oxidative stress as an exacerbating factor of diabetes mellitus. J Clin Biochem Nutr 48:72–77CrossRefGoogle Scholar
  10. 10.
    Zhang H, Xie C, Spencer HJ, Zuo C, Higuchi M, Ranganathan G, Kern PA, Chou MW, Huang Q, Szczesny B, Mitra S, Watson AJ, Margison GP, Fan CY (2011) Obesity and hepatosteatosis in mice with enhanced oxidative DNA damage processing in mitochondria. Am J Pathol 178:1715–1727CrossRefGoogle Scholar
  11. 11.
    Aitken RJ, Curry BJ (2011) Redox regulation of human function: from the physiological control of sperm capacitation to the etiology of infertility and DNA damage in the germ line. Antioxid Redox Signal 14:367–381CrossRefGoogle Scholar
  12. 12.
    Martin LJ (2010) Mitochondrial and cell death mechanisms in neurodegenerative diseases. Pharmaceuticals (Basel) 3:839–915Google Scholar
  13. 13.
    Gille G, Reichmann H (2011) Iron-dependent functions of mitochondria—relation to neurodegeneration. J Neural Transm 118:349–359CrossRefGoogle Scholar
  14. 14.
    Lawless MW, O’Byrne KJ, Gray SG (2010) Targeting oxidative stress in cancer. Expert Opin Ther Targets 14:1225–1245CrossRefGoogle Scholar
  15. 15.
    Reuter S, Gupta SC, Chaturvedi MM, Aggarwal BB (2010) Oxidative stress, inflammation, and cancer: how are they linked. Free Radic Biol Med 49:1603–1616CrossRefGoogle Scholar
  16. 16.
    Möller P, Loft S (2010) Oxidative damage to DNA and lipids as biomarkers of exposure to air pollution. Environ Health Perspect 118:1126–1136CrossRefGoogle Scholar
  17. 17.
    Faux SP, Tai T, Thorne D, Xu Y, Breheny D, Gaca M (2009) The role of oxidative stress in the biological responses of lung epithelial cells to cigarette smoke. Biomarkers 14:90–96CrossRefGoogle Scholar
  18. 18.
    Mena S, Ortega A, Estrela JM (2009) Oxidative stress in environmental-induced carcinogenesis. Mutat Res 674:36–44CrossRefGoogle Scholar
  19. 19.
    Jomova K, Valko M (2011) Advances in metal-induced oxidative stress and human disease. Toxicology 283:65–87CrossRefGoogle Scholar
  20. 20.
    Brillas E, Sirés I, Oturan MA (2009) Electro-Fenton process and related electrochemical technologies based on Fenton’s reaction chemistry. Chem Rev 109:6570–6631CrossRefGoogle Scholar
  21. 21.
    von Sonntag CV (2006) Free-radical induced DNA damage and its repair. A chemical perspective. Springer, HeidelbergGoogle Scholar
  22. 22.
    Douki T, Ravanat J-L, Angelov D, Wagner JR, Cadet J (2004) Effects of duplex stability on charge-transfer efficiency within DNA. In: Schuster GB (ed) Long-range transfer in DNA1. Topics in current chemistry, vol 236. Springer, Berlin Heidelberg, pp 1–25CrossRefGoogle Scholar
  23. 23.
    Cadet J, Douki T, Ravanat J-L, Di Mascio P (2009) Sensitized formation of oxidatively generated damage to cellular DNA by UVA radiation. Photochem Photobiol Sci 8:903–911CrossRefGoogle Scholar
  24. 24.
    Mouret S, Baudouin C, Charveron M, Favier A, Cadet J, Douki T (2006) Cyclobutane pyrimidine dimers are predominant DNA lesions in whole human skin exposed to UVA radiation. Proc Natl Acad Sci USA 103:13765–13770CrossRefGoogle Scholar
  25. 25.
    Hariharan PV, Cerutti PA (1972) Formation and repair of gamma-ray induced thymine damage in Micrococcus radiodurans. J Mol Biol 66:65–81CrossRefGoogle Scholar
  26. 26.
    Schellenberg KA, Shaeffer J, Nichols RK, Gates D (1981) Characterization of radiation damage to DNA by reaction with borohydride. Nucleic Acids Res 9:3863–3872CrossRefGoogle Scholar
  27. 27.
    Cerutti PA (1974) Effects of ionizing radiation on mammalian cells. Naturwissenschaften 61:51–59CrossRefGoogle Scholar
  28. 28.
    Téoule R, Bonicel A, Bert C, Cadet J, Polverelli M (1974) Identification of radioproducts resulting from the breakage of thymine moiety by gamma irradiation of E coli DNA in an aerated aqueous solution. Radiat Res 57:46–58CrossRefGoogle Scholar
  29. 29.
    Hariharan PV, Cerutti PA (1977) Formation of products of the 5,6-dihydroxydihydrothymine type by ultraviolet light in HeLa cells. Biochemistry 16:2791–2795CrossRefGoogle Scholar
  30. 30.
    Hariharan PV, Courtney J, Eleczko S (1980) Production of hydroxyl radicals in cell systems exposed to haematoporphyrin and red light. Int J Radiat Biol 37:691–694Google Scholar
  31. 31.
    Cadet J, Berger M (1985) Radiation-induced decomposition of the purine bases within DNA and related model compounds. Int J Radiat Biol 47:127–143CrossRefGoogle Scholar
  32. 32.
    Dizdaroglu M (1984) The use of capillary gas chromatography–mass spectrometry for identification of radiation-induced DNA base damage and DNA base-amino acid cross-links. J Chromatogr 295:103–121CrossRefGoogle Scholar
  33. 33.
    Floyd RA, Watson JJ, Wong PK, Altmiller DH, Rickard RC (1986) Hydroxyl free radical adduct of deoxyguanosine: sensitive detection and mechanisms of formation. Free Radic Res Commun 1:163–172CrossRefGoogle Scholar
  34. 34.
    Kasai H, Nishimura S (1984) Hydroxylation of deoxyguanosine at the C-8 position by ascorbic acid and other reducing agents. Nucleic Acids Res 12:2137–2145CrossRefGoogle Scholar
  35. 35.
    Halliwell B, Dizdaroglu M (1992) The measurement of oxidative damage to DNA by HPLC and GC/MS techniques. Free Radic Res Commun 16:75–87CrossRefGoogle Scholar
  36. 36.
    Cadet J, D’Ham C, Douki T, Pouget JP, Ravanat JL, Sauvaigo S (1998) Facts and artifacts in the measurement of oxidative damage to DNA. Free Radic Res 29:541–550CrossRefGoogle Scholar
  37. 37.
    Cooke MS, Olinski R, Loft S, European Standards Committee on Urinary (DNA) Lesions Analysis (2008) Measurement and meaning of oxidatively modified DNA lesions in urine. Cancer Epidemiol Biomarkers Prev 17:3–14CrossRefGoogle Scholar
  38. 38.
    Evans MD, Saparbaev M, Cooke MS (2010) DNA repair and the origins of urinary oxidized 2'-deoxyribonucleosides. Mutagenesis 25:433–442CrossRefGoogle Scholar
  39. 39.
    Chen B, Zhou X, Taghizadeh K, Chen J, Stubbe J, Dedon PC (2007) GC/MS methods to quantify the 2-deoxypentos-4-ulose and 3′-phosphoglycolate pathways of 4′ oxidation of 2-deoxyribose in DNA: application to DNA damage produced by gamma radiation and bleomycin. Chem Res Toxicol 20:1701–1708CrossRefGoogle Scholar
  40. 40.
    Chan W, Chen B, Wang L, Taghizadeh K, Demott MS, Dedon PC (2010) Quantification of the 2-deoxyribonolactone and nucleoside 5′-aldehyde products of 2-deoxyribose oxidation in DNA and cells by isotope-dilution gas chromatography mass spectrometry: differential effects of gamma-radiation and Fe2+-EDTA. J Am Chem Soc 132:6145–6153CrossRefGoogle Scholar
  41. 41.
    Taghizadeh K, McFaline JL, Pang B, Sullivan M, Dong M, Plummer E, Dedon PC (2008) Quantification of DNA damage products resulting from deamination, oxidation and reaction with products of lipid peroxidation by liquid chromatography isotope dilution tandem mass spectrometry. Nat Protoc 3:1287–1298CrossRefGoogle Scholar
  42. 42.
    Blair IA (2008) DNA adducts with lipid peroxidation products. J Biol Chem 283:15545–15549CrossRefGoogle Scholar
  43. 43.
    Medeiros MH (2009) Exocyclic DNA adducts as biomarkers of lipid oxidation and predictors disease. Challenges in developing sensitive and specific methods for clinical studies. Chem Res Toxicol 22:419–425CrossRefGoogle Scholar
  44. 44.
    Nair J, Nair UJ, Sun X, Wang Y, Arab K, Bartsch H (2011) Quantifying etheno-DNA adducts in human tissues, white blood cells, and urine by ultrasensitive (32)P-postlabeling and immunohistochemistry. Methods Mol Biol 682:189–205CrossRefGoogle Scholar
  45. 45.
    Voulgaridou GP, Anestopoulos I, Franco R, Panayiotidis MI, Pappa A (2011) DNA damage induced by endogenous aldehydes: current state of knowledge. Mutat Res 711:13–27CrossRefGoogle Scholar
  46. 46.
    Cadet J, Douki T, Ravanat J-L (2010) Oxidatively generated base damage to cellular DNA. Free Radic Biol Med 49:9–21CrossRefGoogle Scholar
  47. 47.
    Chatgilialoglu C, Ferreri C, Terzidis MA (2011) Purine 5′,8-cyclonucleosides: chemistry and biology. Chem Soc Rev 40:1368–21382CrossRefGoogle Scholar
  48. 48.
    Cadet J, Douki T, Ravanat J-L (2008) Oxidatively generated damage to the guanine moiety of DNA: mechanistic aspects and formation in cells. Acc Chem Res 41:1075–1083CrossRefGoogle Scholar
  49. 49.
    Wagner JR, Cadet J (2010) Oxidation reactions of cytosine components by hydroxyl radical and one-electron oxidants in aerated aqueous solutions. Acc Chem Res 43:563–571CrossRefGoogle Scholar
  50. 50.
    Medinas DB, Cerchiaro G, Trindale D, Augusto O (2007) The carbonate radical and related oxidants derived from bicarbonate buffer. IUBMB Life 59:255–262CrossRefGoogle Scholar
  51. 51.
    Joffe A, Geacintov NE, Shafirovich V (2003) DNA lesions derived from the site selective oxidation of guanine by carbonate radical anions. Chem Res Toxicol 16:1528–1538CrossRefGoogle Scholar
  52. 52.
    Cadet J, Douki T, Ravanat J-L (2006) One-electron oxidation of DNA and inflammation processes. Nat Chem Biol 2:348–349CrossRefGoogle Scholar
  53. 53.
    Cadet J, Douki T, Ravanat J-L (2011) Measurement of oxidatively generated base damage in cellular DNA. Mutat Res 711:3–12CrossRefGoogle Scholar
  54. 54.
    Pouget J-P, Douki T, Ravanat J-L, Testard I, Odin F, Cadet J (2002) Formation of modified bases in cells exposed either to gamma radiation or high-LET particles. Radiat Res 157:589–595CrossRefGoogle Scholar
  55. 55.
    Douki T, Ravanat J-L, Pouget J-P, Testard I, Cadet J (2006) Minor contribution of direct ionization to DNA base damage induced by heavy ions. Int J Radiat Biol 82:119–127CrossRefGoogle Scholar
  56. 56.
    Lenton KJ, Therriault H, Fülöp T, Payette H, Wagner JR (1999) Glutathione and ascorbate are negatively correlated with oxidative DNA damage in human lymphocytes. Carcinogenesis 20:607–613CrossRefGoogle Scholar
  57. 57.
    Kriaucianis S, Heintz N (2009) The nuclear base 5-hydroxymethylcytosine is present in Purkinje neurons and the brain. Science 324:929–930CrossRefGoogle Scholar
  58. 58.
    Iqbal K, Jin S-G, Pfeifer GP, Szabo PE (2011) Reprogramming of the paternal genome upon fertilisation involves genome-wide oxidation of 5-methylcytosine. Proc Natl Acad Sci USA 108:3642–3647CrossRefGoogle Scholar
  59. 59.
    Tahiliani M, Koh KP, Shen Y, Pastor WA, Bandukwala H, Brudno Y, Agarwal S, Iyer LM, Liu DR, Aravind L, Rao A (2009) Conversion of 5-methylcytosine to 5-hydroxymethylcytsone in mammalian DNA by MLL partner TET1. Science 324:930–935CrossRefGoogle Scholar
  60. 60.
    Yier LM, Tahiliani M, Rao A, Aravind L (2009) Prediction of novel families of enzymes involved in oxidative and other complex modifications of bases in nucleic acids. Cell Cycle 8:1698–1710CrossRefGoogle Scholar
  61. 61.
    Matter B, Malejka-Giganti D, Csallany AS, Tretyakova N (2006) Quantitative analysis of the oxidative DNA lesion, 2,2-diamino-4-[(−2-deoxy-β-D-erythro-pentofuranosyl)amino]-5(2H)-oxazolone (oxazolone) in vitro and in vivo by isotope dilution-capillary HPLC–ESI-MS/MS. Nucleic Acids Res 34:5449–5460CrossRefGoogle Scholar
  62. 62.
    Bellon S, Ravanat J-L, Gasparutto D, Cadet J (2002) Cross-linked thymine-purine base tandem lesions: synthesis, characterization, and measurement in gamma-irradiated isolated DNA. Chem Res Toxicol 15:598–606CrossRefGoogle Scholar
  63. 63.
    Jiang Y, Hong H, Cao H, Wang Y (2007) In vivo formation and in vitro replication of a guanine–thymine intrastrand cross-link lesion. Biochemistry 46:12757–12763CrossRefGoogle Scholar
  64. 64.
    Hong H, Cao H, Wang Y (2007) Formation and genotoxicity of a guanine–cytosine interstrand cross-link lesion in vivo. Nucleic Acids Res 35:7118–7127CrossRefGoogle Scholar
  65. 65.
    Belmadoui N, Boussicault F, Guerra M, Ravanat J-L, Chatgilialoglu C, Cadet J (2010) Radiation-induced formation of purine 5′,8-cyclonucleosides in isolated and cellular DNA: high stereospecificity and modulating effect of oxygen. Org Biomol Chem 8:3211–3219CrossRefGoogle Scholar
  66. 66.
    Regulus P, Spessotto S, Gateau M, Cadet J, Favier A, Ravanat J-L (2004) Detection of new radiation-induced DNA lesions by liquid chromatography coupled to tandem mass spectrometry. Rapid Commun Mass Spectrom 18:2223–2228CrossRefGoogle Scholar
  67. 67.
    Regulus P, Duroux B, Bayle P-A, Favier A, Cadet J, Ravanat J-L (2006) Oxidation of the sugar moiety of DNA by ionizing radiation or bleomycin could induce the formation of a cluster DNA lesion. Proc Natl Acad Sci USA 104:14032–14037CrossRefGoogle Scholar
  68. 68.
    Helbock HJ, Cundy KC, Ames BN (1998) DNA oxidation matters: the HPLC–electrochemical detection assay of 8-oxo-deoxyguanosine and 8-oxo-guanine. Proc Natl Acad Sci USA 95:288–293CrossRefGoogle Scholar
  69. 69.
    Ravanat J-L, Douki T, Duez P, Gremaud E, Herbert K, Hofer T, Lassere L, Saint-Pierre C, Favier A, Cadet J (2002) Cellular background of 8-oxo-7,8-dihydro-2′-deoxyguanosine: an isotope based method to evaluate artefactual oxidation of DNA during its extraction and subsequent work-up. Carcinogenesis 23:1911–1918CrossRefGoogle Scholar
  70. 70.
    Badouard C, Ménézo Y, Panteix G, Ravanat J-L, Douki T, Cadet J, Favier A (2008) Determination of new types of DNA lesions in human sperm. Zygote 16:9–13CrossRefGoogle Scholar
  71. 71.
    Dizdaroglu M (1990) Gas chromatography of free radical-induced products of pyrimidines and purines in DNA. Methods Enzymol 193:842–857CrossRefGoogle Scholar
  72. 72.
    Dizdaroglu M (1993) Quantitative determination of oxidative base damage in DNA by stable isotope-dilution mass spectrometry. FEBS Lett 315:1–6CrossRefGoogle Scholar
  73. 73.
    Boiteux S, Gajewski E, Laval J, Dizdaroglu M (1992) Substrate specificity of the Escherichia coli protein (formamidopyrimidine-DANN glycosylase): excision of purine lesions in DNA produced by ionizing radiation or photosensitization. Biochemistry 31:106–110CrossRefGoogle Scholar
  74. 74.
    Dizdaroglu M, Laval J, Boiteux S (1993) Substrate specificity of the Escherichia coli endonuclease III: excision of thymine- and cytosine-derived lesions in DNA produced by radiation-generated free radicals. Biochemistry 32:12105–12106CrossRefGoogle Scholar
  75. 75.
    Cadet J, Douki T, Ravanat J-L (1997) Artifacts associated with the measurement of oxidized DNA bases. Environ Health Perspect 105:1034–1039CrossRefGoogle Scholar
  76. 76.
    Ravanat J-L, Turesky RJ, Gremaud E, Trudel LJ, Stadler RH (1995) Determination of 8-oxoguanine in DNA by gas chromatography–mass spectrometry and HPLC–electrochemical detection: overestimation of the background level of the oxidized base by the gas chromatography–mass spectrometry assay. Chem Res Toxicol 8:1039–1045CrossRefGoogle Scholar
  77. 77.
    Hamberg M, Zhang L-Y (1995) Quantitative determination of 8-hydroxyguanine and guanine by isotope dilution mass spectrometry. Anal Biochem 229:336–344CrossRefGoogle Scholar
  78. 78.
    Kelley JA, Abbasi MA, Beisler JA (1980) Silylation mediated oxidation of dihydropyrimidine bases and nucleosides. Anal Biochem 103:203–213CrossRefGoogle Scholar
  79. 79.
    Douki T, Delatour T, Bianchini F, Cadet J (1996) Observation and prevention of an artefactual formation of oxidized DNA bases and nucleosides in the GC–EIMS method. Carcinogenesis 17:347–353CrossRefGoogle Scholar
  80. 80.
    Douki T, Martini R, Ravanat J-L, Tureski RJ, Cadet J (1997) Measurement of 2,6-diamino-4-hydroxy-5-formamidopyrimidine and 8-oxo-7,8-dihydroguanine in isolated DNA exposed to gamma radiation in aqueous solution. Carcinogenesis 18:2385–2391CrossRefGoogle Scholar
  81. 81.
    Collins AR, Cadet J, Möller L, Poulsen H, Viňa J (2004) Are we sure we know how to measure 8-oxo-7,8-dihydroguanine in DNA from human cells? Arch Biochem Biophys 423:57–65CrossRefGoogle Scholar
  82. 82.
    Jaruga P, Kirkali G, Dizdaroglu M (2008) Measurement of formamidopyrimidines in DNA. Free Radic Biol Med 45:1601–1609CrossRefGoogle Scholar
  83. 83.
    Jaruga P, Dizdaroglu M (2008) 8,5′-Cyclopurine-2′-deoxynucleosides in DNA: mechanisms of formation, measurement, repair and biological effects. DNA Repair (Amst) 7:1413–1425CrossRefGoogle Scholar
  84. 84.
    Malins DC, Anderson MK, Stegeman JJ, Jaruga P, Green VM, Gilman NK, Dizdaroglu M (2006) Biomarkers signal contaminant effects on the organs of English sole (Parophrys vetulus) from Puget sound. Environ Health Perspect 114:823–829CrossRefGoogle Scholar
  85. 85.
    Jaruga P, Speina E, Gackowski D, Tudek B, Olinski R (2000) Endogenous oxidative DNA base modifications analysed with repair enzymes and GC/MS technique. Nucleic Acids Res 28:E16CrossRefGoogle Scholar
  86. 86.
    Cooke MS, Evans MD, Dizdaroglu M, Lunec J (2003) Oxidative DNA damage: mechanisms, mutation and disease. FASEB J 17:1195–1214CrossRefGoogle Scholar
  87. 87.
    Wagner JR, Hu CC, Ames BN (1992) Endogenous oxidative damage of deoxycytidine in DNA. Proc Natl Acad Sci USA 89:3380–3384CrossRefGoogle Scholar
  88. 88.
    Berger M, Anselmino C, Mouret J-F, Cadet J (1990) High performance liquid chromatography–electrochemical assay for monitoring the formation of 8-oxo-7,8-dihydroadenine and its related 2′-deoxynucleoside. J Liq Chromatogr 13:929–932CrossRefGoogle Scholar
  89. 89.
    Park J-W, Cundy KC, Ames BN (1989) Detection of DNA adducts by high-performance liquid chromatography with electrochemical detection. Carcinogenesis 10:827–832CrossRefGoogle Scholar
  90. 90.
    Ravanat J-L, Gremaud E, Markovic J, Turesky RJ (1998) Detection of 8-oxoguanine in cellular DNA using 2,6-diamino-8-oxopurine as an internal standard for high-performance liquid chromatography with electrochemical detection. Anal Biochem 260:30–37CrossRefGoogle Scholar
  91. 91.
    Cadet J, Douki T, Frelon S, Sauvaigo S, Pouget J-P, Ravanat J-L (2002) Assessment of oxidative base damage to isolated and cellular DNA by HPLC–MS/MS measurement. Free Radic Biol Med 33:441–442CrossRefGoogle Scholar
  92. 92.
    Tuo J, Jaruga P, Rodriguez H, Dizdaroglu M, Bohr VA (2002) The Cockayne syndrome group B gene product is involved in cellular repair of 8-hydroxyadenine in DNA. J Biol Chem 277:30832–30837CrossRefGoogle Scholar
  93. 93.
    Tuo J, Jaruga P, Rodriguez H, Bohr VA, Dizdaroglu M (2003) Primary fibroblasts of Cockayne syndrome patients are defective in cellular repair of 8-hydroxyguanine and 8-hydroxyadenine resulting from oxidative stress. FASEB J 17:668–674CrossRefGoogle Scholar
  94. 94.
    Pouget J-P, Douki T, Richard M-J, Cadet J (2000) DNA damage induced in cells by gamma and UVA radiation as measured by HPLC–MS and HPLC–EC and comet assay. Chem Res Toxicol 13:541–549CrossRefGoogle Scholar
  95. 95.
    Goodhead DT (1989) The initial physical damage produced by ionizing radiations. Int J Radiat Biol 56:623–634CrossRefGoogle Scholar
  96. 96.
    D’Errico M, Parlanti E, Teson M, Bernades de Jesus BM, Degan P, Calcagnile A, Jaruga P, Bjørås M, Crescenzi M, Pedrini AM, Egly JM, Zambruno G, Stefanini M, Dizdaroglu D, Dogliotti E (2006) New functions of XPC in the protection of human skin cells from oxidative damage. EMBO J 25:4305–4315CrossRefGoogle Scholar
  97. 97.
    Münzel M, Globisch D, Brückl T, Wagner M, Welzmiller V, Michalakis S, Müller M, Biel M, Carell T (2010) Quantification of the sixth DNA base hydroxymethylcytosine in the brain. Angew Chem Int Ed 49:5375–5377CrossRefGoogle Scholar
  98. 98.
    Münzel M, Globisch D, Carell T (2011) 5-Hydroxymethylcytosine, the sixth base of the genome. Angew Chem Int Ed Engl 50:6460–6468CrossRefGoogle Scholar
  99. 99.
    Cadet J, Poulsen H (2010) Measurement of oxidatively generated base damage in cellular DNA and urine. Free Radic Biol Med 48:1457–1459CrossRefGoogle Scholar
  100. 100.
    Serrano J, Palmeira CM, Wallace KB, Kuehl DW (1996) Determination of 8-hydroxyguanosine in biological tissues by liquid chromatography/electrospray ionization–mass spectrometry. Rapid Commun Mass Spectrom 10:1789–1791CrossRefGoogle Scholar
  101. 101.
    Ravanat J-L, Duretz B, Guiller A, Douki T, Cadet J (1998) Isotope dilution high-performance liquid chromatography–electrospray tandem mass spectrometry assay for the measurement of 8-oxo-7,8-dihydro-2′-deoxyguanosine in biological samples. J Chromatogr B 715:349–356CrossRefGoogle Scholar
  102. 102.
    Frelon S, Douki T, Ravanat J-L, Pouget J-P, Tornabene C, Cadet J (2000) High-performance liquid chromatography–tandem mass spectrometry measurement of radiation-induced base damage to isolated and cellular DNA. Chem Res Toxicol 13:1002–1010CrossRefGoogle Scholar
  103. 103.
    Podmore ID, Cooper D, Evans MD, Wood M, Lunec J (2000) Simultaneous measurement of 8-oxo-2′-deoxyguanosine and 8-oxo-2′-deoxyadenosine by HPLC–MS/MS. Biochem Biophys Res Commun 277:764–770CrossRefGoogle Scholar
  104. 104.
    Weimann A, Belling D, Poulsen HE (2001) Measurement of 8-oxo-2′-deoxyguanosine and 8-oxo-2′-deoxyadenosine in DNA and human urine by high-performance liquid chromatography–electrospray tandem mass spectrometry. Free Radic Biol Med 30:57–764CrossRefGoogle Scholar
  105. 105.
    Glintborg B, Weimann A, Kensler TW, Poulsen HE (2006) Oltipraz chemoprevention trial in Qidong, People’s Republic of China: unaltered oxidative biomarkers. Free Radic Biol Med 41:1010–1014CrossRefGoogle Scholar
  106. 106.
    Singh R, Teichert F, Verschoyle RD, Kaur B, Vives M, Sharma RA, Steward WP, Gescher AJ, Farmer PB (2009) Simultaneous determination of 8-oxo-2′-deoxyguanosine and 8-oxo-2′-deoxyadenosine in DNA using online column-switching liquid chromatography/tandem mass spectrometry. Rapid Commun Mass Spectrom 23:151–160CrossRefGoogle Scholar
  107. 107.
    Chao MR, Yen CC, Hu CW (2008) Prevention of artifactual oxidation in determination of cellular 8-oxo-7,8-dihydro-2′-deoxyguanosine by isotope-dilution LC-MS/MS with automated solid-phase extraction. Free Radic Biol Med 44:464–473CrossRefGoogle Scholar
  108. 108.
    Mangal D, Vudathala D, Park JH, Lee SH, Penning TM, Blair IA (2009) Analysis of 7,8-dihydro-8-oxo-2′-deoxyguanosine in cellular DNA during oxidative stress. Chem Res Toxicol 22:788–797CrossRefGoogle Scholar
  109. 109.
    Bailey DT, DeFedericis H-C, Greene KF, Iijima H, Budzinski EE, Patrzyc HB, Dawidzik JB, Box HC (2006) A novel approach to DNA damage assessments: measurement of the thymine glycol lesion. Radiat Res 165:438–444CrossRefGoogle Scholar
  110. 110.
    Greene KF, Budzinski EE, Iijima H, Dawidzik JB, DeFedericis H-C, Patrzyc HB, Evans MS, Bailey DT, Freund HG, Box HC (2007) Assessment of DNA damage at the dimer level: measurement of the formamide lesion. Radiat Res 167:146–151CrossRefGoogle Scholar
  111. 111.
    Iijima H, Patrzyc HB, Budzinski EE, Freund HG, Dawidzik JB, Rodabaugh KJ, Box HC (2009) A study of pyrimidine base damage in relation to oxidative stress and cancer. Br J Cancer 101:452–456CrossRefGoogle Scholar
  112. 112.
    DeFedericis H-C, Patrzyc HB, Rajecki MJ, Budzinski EE, Iijima H, Dawidzik JB, Evans MS, Greene KF, Box HC (2006) Singlet oxygen-induced DNA damage. Radiat Res 165:445–451CrossRefGoogle Scholar
  113. 113.
    Prat F, Houk KN, Foote CS (1998) Effects of guanine stacking on the oxidation of 8-oxoguanine in β-DNA. J Am Chem Soc 120:845–846CrossRefGoogle Scholar
  114. 114.
    Ravanat J-L, Saint-Pierre C, Cadet J (2003) One-electron oxidation of the guanine moiety of 2′-deoxyguanosine: influence of 8-oxo-7,8-dihydro-2′-deoxyguanosine. J Am Chem Soc 125:2030–2031CrossRefGoogle Scholar
  115. 115.
    Luo W, Muller JG, Rachlin EM, Burrows CJ (2001) Characterization of hydantoin products from one-electron oxidation of 8-oxo-7,8-dihydroguanosine in a nucleoside model. Chem Res Toxicol 14:927–938CrossRefGoogle Scholar
  116. 116.
    Hailer MK, Slade PG, Martin BD, Sugden KD (2005) Nei deficient Escherichia coli are sensitive to chromate and accumulate the oxidized guanine lesion spiroiminodihydantoin. Chem Res Toxicol 18:1378–1383CrossRefGoogle Scholar
  117. 117.
    West GJ, West IW-L, Ward JF (1982) Radioimmunoassay of 7,8-dihydro-8-oxoadenine (8-hydroxyadenine). Int J Radiat Biol 42:481–490CrossRefGoogle Scholar
  118. 118.
    Hubbard K, Huang H, Laspia MF, Die H, Erlanger BF, Wallace SS (1998) Immunochemical quantitation of thymine glycol in oxidized and X-irradiated DNA. Radiat Res 118:257–268CrossRefGoogle Scholar
  119. 119.
    Signorini N, Molko D, Cadet J (1998) Polyclonal antibodies to adenine N1-oxide: characterization and use for the measurement of DNA damage. Chem Res Toxicol 11:1169–1175CrossRefGoogle Scholar
  120. 120.
    Yin B, Whyatt RM, Perera FP, Randall MC, Cooper TB, Santella RM (1995) Determination of 8-hydroxydeoxyguanosine by an immunoaffinity chromatography–monoclonal antibody-based ELISA. Free Radic Biol Med 18:1023–1032CrossRefGoogle Scholar
  121. 121.
    Mitchell DL, Meador J, Paniker L, Gasparutto D, Jeffrey WH, Cadet J (2002) Development and application of a novel immunoassay for measuring oxidative DNA damage in the environment. Photochem Photobiol 75:257–265CrossRefGoogle Scholar
  122. 122.
    Cooke MS, Evans MD, Podmore ID, Herbert KE, Mistry N, Mistry P, Hickenbotham PT, Hussieni A, Griffiths HR, Lunec J (1998) Novel repair action of vitamin C upon in vivo oxidative DNA damage. FEBS Lett 439:363–367CrossRefGoogle Scholar
  123. 123.
    Musarrat J, Arezina-Wilson J, Wani AA (1996) Prognostic and aetiological relevance of 8-hydroxyguanosine in human breast carcinogenesis. Eur J Cancer 32A:1209–1214CrossRefGoogle Scholar
  124. 124.
    Santella RM (1999) Immunological methods for detection of carcinogen-DNA damage in humans. Cancer Epidemiol Biomarkers Prevent 8:733–739Google Scholar
  125. 125.
    Ito S, D’Alessio AC, Taranova OV, Hong K, Sowers LC, Zhang Y (2010) Role of TeT proteins in 5mC to 5hmC conversion, ES-cell self-renewal and inner cell mass specification. Nature 466:1129–1133CrossRefGoogle Scholar
  126. 126.
    Globisch D, Münzel M, Müller M, Michakalis S, Wagner M, Koch S, Brückl T, Biel M, Carell T (2010) Tissue distribution of 5-hydroxymethylcytosine and search for active demethylation intermediates. PLoS One 5:e15367CrossRefGoogle Scholar
  127. 127.
    Ohno M, Miura T, Furuichi M, Tominaga Y, Tsuchimoto D, Sakumi K, Nakabeppu Y (2006) A genome-wide distribution of 8-oxoguanine correlates with the preferred regions for recombination and single nucleotide polymorphism in the human genome. Genome Res 16:567–575CrossRefGoogle Scholar
  128. 128.
    Toyokuni S, Iwasa Y, Kondo S, Tanaka T, Ochi H, Hiai H (1999) Intranuclear distribution of 8-hydroxy-2′-deoxyguanosine: an immunocytochemical study. J Histochem Cytochem 47:833–835CrossRefGoogle Scholar
  129. 129.
    Machella N, Regoli F, Cambria A, Santella RM (2004) Oxidative damage to DNA: an immunohistochemical approach for detection of 7,8-dihydro-8-oxodeoxyguanosine in marine organisms. Marine Environ Res 58:725–729CrossRefGoogle Scholar
  130. 130.
    Nakae Y, Stoward PJ, Bespalov IA, Melamede RJ, Wallace SS (2005) A new technique for the quantitative assessment of 8-oxoguanine in nuclear DNA as a marker of oxidative stress. Application to dystrophin-deficient DMD skeletal muscles. Histochem Cell Biol 124:335–345CrossRefGoogle Scholar
  131. 131.
    Kemeleva EA, Sinitsyna OI, Kolosov NG, Vasyunina EA, Zharkov DO, Conlon KA, Berrios M, Nevinsky GA (2006) Immunofluorescent detection of 8-oxoguanine DNA lesions in liver cells from aging OXYS rats, a strain prone to overproduction of free radicals. Mutat Res 599:88–97CrossRefGoogle Scholar
  132. 132.
    Ohtsubo T, Ohya Y, Nakamura Y, Kansui Y, Furuichi M, Matsumura K, Fujii K, Iida M, Nakabeppu Y (2007) Accumulation of 8-oxo-deoxyguanosine in cardiovascular tissues with the development of hypertension. DNA Repair (Amst) 6:760–769CrossRefGoogle Scholar
  133. 133.
    Oka S, Ohno M, Tsuchimoto D, Sakumi K, Furuichi M, Nakabeppu Y (2008) Two distinct pathways of cell death triggered by oxidative damage to nuclear and mitochondrial DNAs. EMBO J 27:421–432CrossRefGoogle Scholar
  134. 134.
    Sheridan J, Wang LM, Tosetto M, Sheahan K, Hyland J, Fennelly D, O’Donoghue D, Mulcahy H, O’Sullivan J (2009) Nuclear oxidative damage correlates with poor survival in colorectal cancer. Br J Cancer 100:381–388CrossRefGoogle Scholar
  135. 135.
    Ohno M, Oka S, Nakabeppu Y (2009) Quantitative analysis of oxidized guanine, 8-oxoguanine, in mitochondrial DNA by immunofluorescence method. Methods Mol Biol 554:199–212CrossRefGoogle Scholar
  136. 136.
    Maynard S, de Souza-Pinto NC, Scheibye-Knudsen M, Bohr VA (2010) Mitochondrial base excision repair assays. Methods 51:416–425CrossRefGoogle Scholar
  137. 137.
    Akatsuka S, Toyokuni S (2010) Genome-scale approaches to investigate oxidative DNA damage. J Clin Biochem Nutr 47:91–97CrossRefGoogle Scholar
  138. 138.
    Akatsuka S, Aung TT, Dutta KK, Jiang L, Lee WH, Liu YT, Onuki J, Shirase T, Yamasaki K, Ochi H, Naito Y, Yoshikawa T, Kasai H, Tominaga Y, Sakumi K, Nakabeppu Y, Kawai Y, Uchida K, Yamasaki A, Tsuruyama T, Yamada Y, Toyokuni S (2006) Contrasting genome-wide distribution of 8-hydroxyguanine and acrolein-modified adenine during oxidative stress-induced renal carcinogenesis. Am J Pathol 169:1328–1342CrossRefGoogle Scholar
  139. 139.
    Jin SG, Wu X, Li AX, Pfeifer GP (2011) Genomic mapping of 5-hydroxymethylcytosine in the human brain. Nucleic Acids Res 39:5015–5024CrossRefGoogle Scholar
  140. 140.
    Shock LS, Thakkar PV, Peterson EJ, Moran RG, Taylor SM (2011) DNA methyltransferase 1, cytosine methylation, and cytosine hydroxymethylation in mammalian mitochondria. Proc Natl Acad Sci USA 108:3630–3635CrossRefGoogle Scholar
  141. 141.
    Shan X, Tashiro H, Lin C-L (2003) The identification and characterization of oxidized RNAs in Alzheimer’s disease. J Neurosci 23:4913–4921Google Scholar
  142. 142.
    Shan X, Lin C-L (2006) Quantification of oxidized RNAs in Alzheimer’s disease. Neurobiol Aging 27:657–662CrossRefGoogle Scholar
  143. 143.
    Chang Y, Kong Q, Shan X, Tan G, Ilieva H, Cleveland DW, Rothstein JD, Borchelt DR, Wong PC, Lin CG (2008) Messenger RNA oxidation occurs early in disease pathogenesis and promotes motor neuron degeneration in ALS. PLoS One 3:e2849CrossRefGoogle Scholar
  144. 144.
    Struthers L, Patel R, Clark J, Thomas S (1998) Direct detection of 8-oxodeoxyguanosine and 8-oxoguanine by avidin and its analogues. Anal Biochem 255:20–31CrossRefGoogle Scholar
  145. 145.
    Chen S-K, Tsai M-H, Lin C-H, Hwang JJ, Chan WP (2001) Determination of 8-oxoguanine in individual cell nucleus of gamma-irradiated mammalian cells. Radiat Res 155:832–836CrossRefGoogle Scholar
  146. 146.
    Conners R, Hooley E, Clarke AR, Thomas S, Brady RL (2006) Recognition of oxidatively modified bases within the biotin-binding site of avidin. J Mol Biol 357:263–274CrossRefGoogle Scholar
  147. 147.
    Tice RR, Agurell E, Anderson D, Burlinson B, Hartmann A, Kobayashi H, Miyamae Y, Rojas E, Ryu JC, Sasaki YF (2000) Single cell gel/comet assay: guidelines 725 for in vitro and in vivo genetic toxicology testing. Environ Mol Mutagen 35:206–221CrossRefGoogle Scholar
  148. 148.
    Azqueta A, Gutzkow KB, Brunborg G, Collins AR (2011) Towards a more reliable comet assay: optimising agarose concentration, unwinding time and electrophoresis conditions. Mutat Res 724:41–45CrossRefGoogle Scholar
  149. 149.
    Kohn KW (1991) Principles and practice of DNA filter elution. Pharmacol Ther 49:55–77CrossRefGoogle Scholar
  150. 150.
    Guetens G, De Boeck G, Highley M, van Oosterom AT, de Bruijn EA (2002) Oxidative DNA damage: biological significance and methods of analysis. Crit Rev Clin Sci 39:331–457CrossRefGoogle Scholar
  151. 151.
    Lhomme J, Constant J-F, Demeunynck M (1999) Abasic DNA structure, reactivity, and recognition. Biopolymers 52:65–83CrossRefGoogle Scholar
  152. 152.
    Lustig MJ, Cadet J, Boorstein RJ, Teebor GW (1992) Synthesis of the diastereomers of thymidine glycol, determination of concentrations and rates of interconversion of their cis–trans epimers at equilibrium and demonstration of differential alkali lability within DNA. Nucleic Acids Res 20:4839–4845CrossRefGoogle Scholar
  153. 153.
    Berthod T, Petillot Y, Guy A, Cadet J, Forest E, Molko D (1996) Synthesis and mass spectrometry analysis of oligonucleotides bearing 5-formyl-2′-deoxyuridine in their structure. Nucleosides, Nucleotides 15:1287–1300CrossRefGoogle Scholar
  154. 154.
    Hartwig A, Dally H, Schlepegrell R (1996) Sensitive analysis of oxidative DNA damage in mammalian cells: use of bacterial Fpg protein in combination with alkaline unwinding. Toxicol Lett 88:85–90CrossRefGoogle Scholar
  155. 155.
    Collins AR, Duthie SJ, Dobson VL (1993) Direct enzymic detection of endogenous oxidative base damage in human lymphocyte DNA. Carcinogenesis 14:1733–1735CrossRefGoogle Scholar
  156. 156.
    Johansson C, Möller P, Forchhammer L, Loft S, Godschalk RW, Langie SA, Lumeij S, Jones GD, Kwok RW, Azqueta A, Philips DH, Sozeri O, Routledge MN, Charlton AJ, Riso P, Porrini M, Allione A, Matullo G, Palus J, Stepnik M, Collins AR, Möller L (2010) An ECVAG trial on assessment of oxidative damage to DNA measured by the comet assay. Mutagenesis 25:125–132CrossRefGoogle Scholar
  157. 157.
    Epe B, Hegler J (1994) Oxidative DNA damage: endonuclease fingerprinting. Methods Enzymol 234:122–131CrossRefGoogle Scholar
  158. 158.
    Pflaum M, Will O, Malher HC, Epe B (1998) DNA oxidation products determined with repair endonucleases in mammalian cells: types, basal levels and influence of cell proliferation. Free Radic Res 29:585–594CrossRefGoogle Scholar
  159. 159.
    Gasparutto D, Muller E, Boiteux S, Cadet J (2009) Excision of the oxidatively formed 5-hydroxyhydantoin and 5-hydroxy-5-methylhydantoin pyrimidine lesions by Escherichia coli and Saccharomyces cerevisiae DNA N-glycosylases. Biochim Biophys Acta 1790:16–24CrossRefGoogle Scholar
  160. 160.
    Ide H (2001) DNA substrates containing defined oxidative base lesions and their application to study substrate specificities of base excision repair enzymes. Prog Nucleic Acid Res Mol Biol 68:207–221CrossRefGoogle Scholar
  161. 161.
    Tchou J, Kasai H, Shibutani S, Chung MH, Laval J, Grollman AP, Nishimura S (1991) 8-Oxoguanine (8-hydroxyguanine) DNA glycosylase and its substrate specificity. Proc Natl Acad Sci USA 88:4690–4694CrossRefGoogle Scholar
  162. 162.
    Dherin C, Radicella JP, Dizdaroglu M, Boiteux S (1999) Excision of oxidatively generated DNA bases by the human apha-hOgg1 protein and the polymorphism apha-hOgg1(Ser326Cys) protein which is frequently found in human populations. Nucleic Acids Res 27:4001–4007CrossRefGoogle Scholar
  163. 163.
    Smith CC, O’Donovan MR, Martin EA (2006) hOGG1 recognizes oxidative damage using the comet assay with greater specificity than FPG or ENDOIII. Mutagenesis 21:185–190CrossRefGoogle Scholar
  164. 164.
    Pflaum M, Will O, Epe B (1997) Determination of steady-state levels of oxidative DNA base modifications in mammalian cells by means of repair endonucleases. Carcinogenesis 18:2225–2231CrossRefGoogle Scholar
  165. 165.
    ESCODD, Gedik CM, Collins AR (2005) Establishing the background level of base oxidation in human lymphocyte DNA: results of an inter-laboratory validation study. FASEB J 19:82–84Google Scholar
  166. 166.
    Sauvaigo S, Petec-Calin C, Caillat S, Odin F, Cadet J (2002) Comet assay coupled to repair enzymes for the detection of oxidative damage to DNA induced by low doses of gamma-radiation: use of YOYO-1, low background slides, and optimal electrophoresis conditions. Anal Biochem 303:107–109CrossRefGoogle Scholar
  167. 167.
    Ravanat J-L, Sauvaigo S, Caillat S, Martinez GR, Medeiros MH, Di Mascio P, Favier A, Cadet J (2004) Singlet oxygen-mediated damage to cellular DNA determined by the comet assay associated with DNA repair enzymes. Biol Chem 385:17–20CrossRefGoogle Scholar
  168. 168.
    Bergeron F, Auvré F, Radicella JP, Ravanat J-L (2010) HO* radicals induced an unexpected high proportion of tandem lesions refractory to repair by DNA glycosylases. Proc Natl Acad Sci USA 107:5528–5533CrossRefGoogle Scholar
  169. 169.
    Collins AR, HarringtonV DJ, Melvin R (2003) Nutritional modulation of DNA repair in a human intervention study. Carcinogenesis 24:511–515CrossRefGoogle Scholar
  170. 170.
    Loft S, Høgh Danielsen P, Mikkelsen L, Risom L, Forchhammer L, Møller P (2008) Biomarkers of oxidative damage to DNA and repair. Biochem Soc Trans 36:1071–1076CrossRefGoogle Scholar
  171. 171.
    Azqueta A, Shaposhnikov S, Collins AR (2009) DNA oxidation: investigating its key role in environmental mutagenesis with the comet assay. Mutat Res 674:101–108CrossRefGoogle Scholar
  172. 172.
    Trap C, McCullough AK, Epe B (2007) The basal levels of 8-oxoG and other oxidative modifications in intact mitochondrial DNA are low even in repair deficient (Ogg1−/−/Csb−/−) mice. Mutat Res 625:155–163CrossRefGoogle Scholar
  173. 173.
    Ward JF (1985) Biochemistry of DNA lesions. Radiat Res Suppl 8:S103–S111CrossRefGoogle Scholar
  174. 174.
    Nikjoo H, O’Neill P, Wilson WE, Goodhead DT (2001) Computational approach for determining the spectrum of DNA damage induced by ionizing radiation. Radiat Res 156:577–583CrossRefGoogle Scholar
  175. 175.
    Semenenko VA, Stewart RD (2004) A fast Monte Carlo algorithm to simulate the spectrum of DNA damages formed by ionizing radiation. Radiat Res 161:451–457CrossRefGoogle Scholar
  176. 176.
    Sutherland BM, Bennett PV, Sidorkina O, Laval J (2000) Clustered DNA damages induced in isolated DNA and in human cells by low doses of ionizing radiation. Proc Natl Acad Sci USA 97:103–108CrossRefGoogle Scholar
  177. 177.
    Georgakilas A (2011) Detection of clustered DNA lesions: biological and clinical applications. World J Biol Chem 2:173–176CrossRefGoogle Scholar
  178. 178.
    Sutherland BM, Georgakilas AG, Bennett PV, Laval J, Sutherland JC (2003) Quantifying clustered DNA damage induction and repair by gel electrophoresis, electronic imaging and number average length analysis. Mutat Res 531:93–107CrossRefGoogle Scholar
  179. 179.
    Georgakilas AG, Bennett PV, Wilson DM III, Sutherland BM (2004) Processing of bistranded abasic DNA clusters in γ-irradiated human hematopoietic cells. Nucleic Acids Res 32:5609–5620CrossRefGoogle Scholar
  180. 180.
    Hada M, Georgakilas AG (2008) Formation of clustered DNA damage after high-LET irradiation: a review. J Radiat Res 49:203–210CrossRefGoogle Scholar
  181. 181.
    Nowsheen S, Wukovich RL, Aziz K, Kalogerinis PT, Richardson CC, Panayiotidis MI, Bonner WM, Sedelnikova OA, Georgakilas AG (2009) Accumulation of oxidatively induced clustered DNA lesions in human tumor tissues. Mutat Res 674:131–136CrossRefGoogle Scholar
  182. 182.
    Peddi P, Loftin CW, Dickey JS, Hair JM, Burns KJ, Aziz K, Francisco DC, Panayiotidis MI, Sedelnikova OA, Bonner WM, Winters TA, Georgakilas AG (2010) DNA-PKc deficiency leads to persistence of oxidatively induced clustered DNA lesions in human tumor cells. Free Radic Biol Med 48:1435–1443CrossRefGoogle Scholar
  183. 183.
    Holt SM, Georgakilas AQ (2007) Detection of complex DNA damage in γ-irradiated acute lymphoblastic leukemia pre-B NALM-6 cells. Radiat Res 168:527–534CrossRefGoogle Scholar
  184. 184.
    Holt SM, Scemama J-L, Panayiotidis MI, Georgakilas AG (2009) Compromised repair of clustered DNA damage in the human acute lymphoblastic MSH2-deficient NALM-6 cells. Mutat Res 674:123–130CrossRefGoogle Scholar
  185. 185.
    Tsao D, Kalogerinis P, Tabrizi I, Dingfelder M, Stewart RD, Georgakilas AG (2007) Induction and processing of oxidative clustered DNA lesions in 56Fe-ion-irradiated human monocytes. Radiat Res 168:87–97CrossRefGoogle Scholar
  186. 186.
    Francisco DC, Peddi P, Hair JM, Flood BA, Cecil AM, Kalogerinis PT, Sigounas G, Georgakilas AG (2008) Induction and processing of complex DNA damage in human breast cancer cells MCF-7 and non-malignant MCF-10A cells. Free Radic Biol Med 44:558–569CrossRefGoogle Scholar
  187. 187.
    Bennett PV, Cintron NS, Gros L, Laval J, Sutherland BM (2004) Are endogenous clustered DNA damages induced in human cells? Free Radic Biol Med 37:488–499CrossRefGoogle Scholar
  188. 188.
    Bennett PV, Cuomo NL, Paul S, Tafrov ST, Sutherland BM (2005) Endogenous DNA damage clusters in human skin, 3-D model, and cultured skin cells. Free Radic Biol Med 39:832–839CrossRefGoogle Scholar
  189. 189.
    Bennett P, Ishchenko AA, Laval J, Paap B, Sutherland BM (2008) Endogenous DNA damage clusters in human hematopoietic stem and progenitor cells. Free Radic Biol Med 45:1352–1359CrossRefGoogle Scholar
  190. 190.
    Kryston TB, Georgiev AB, Pissis P, Georgakilas AG (2011) Role of oxidative stress and DNA damage in human carcinogenesis. Mutat Res 711:193–201CrossRefGoogle Scholar
  191. 191.
    Möller L, Hofer T (1997) [32P]ATP mediates formation of 8-hydroxy-2′-deoxyguanosine from 2′-deoxyguanosine, a possible problem in the 32P-postlabeling assay. Carcinogenesis 18:2415–2419CrossRefGoogle Scholar
  192. 192.
    Schuler D, Otteneder M, Sagelsdorff P, Eder E, Gupta RC, Lutz WK (1997) Comparative analysis of 8-oxo-2′-deoxyguanosine in DNA by 32P- and 33P-postlabeling and electrochemical detection. Carcinogenesis 18:2367–2371CrossRefGoogle Scholar
  193. 193.
    U-s D, Gupta RC (1996) Sensitive detection of 8-hydroxy-2′-deoxyguanosine in DNA by 32P-postlabeling assay and the basal levels in rat tissues. Carcinogenesis 17:917–924CrossRefGoogle Scholar
  194. 194.
    Randerath K, Zhou GD, Monk SA, Randerath E (1997) Enhanced levels in neonatal rat liver of 7,8-dihydro-8-oxo-2′-deoxyguanosine (8-hydroxydeoxyguanosine), a major mutagenic oxidative DNA lesion. Carcinogenesis 18:1419–1421CrossRefGoogle Scholar
  195. 195.
    Zeisig M, Hofer T, Cadet J, Möller L (1999) 32P-postlabeling high performance liquid chromatography (32P-HPLC) adapted for analysis of 8-hydroxy-2′-deoxyguanosine. Carcinogenesis 20:1241–1245CrossRefGoogle Scholar
  196. 196.
    Gupta RC, Arif JM (2001) An improved 32P-postlabeling assay for the sensitive detection of 8-oxodeoxyguanosine in tissue DNA. Chem Res Toxicol 14:951–957CrossRefGoogle Scholar
  197. 197.
    Ravoori S, Vadhanam MV, Davey DD, Srinivasan C, Nagarajan B, Gupta RC (2006) Modulation of novel DNA adducts during human uterine cervix cancer progression. Int J Oncol 29:1437–1443Google Scholar
  198. 198.
    Randerath K, Yang P-F, Danna TF, Reddy R, Watson WP, Randerath E (1991) Bulky adducts detected by 32P-postlabeling in DNA modified by oxidative damage in vitro. Comparison with rat lung I-compounds. Mutat Res 250:135–144CrossRefGoogle Scholar
  199. 199.
    Randerath K, Zhou G-D, Somers RL, Robbins JH, Brooks PJ (2001) A 32P-postlabeling assay for the oxidative DNA lesion 8,5′-cyclo-2′-deoxyadenosine in mammalian tissues. Evidence that four type II I-compounds are dinucleotides containing the lesion in the 3′ nucleotide. J Biol Chem 276:36051–36057CrossRefGoogle Scholar
  200. 200.
    Hellborg R, Skog G (2008) Accelerator mass spectrometry. Mass Spectrom Rev 27:398–427CrossRefGoogle Scholar
  201. 201.
    Brown K, Tompkins EM, White IN (2006) Applications of accelerator mass spectrometry for pharmacological and toxicological research. Mass Spectrom Rev 25:127–145CrossRefGoogle Scholar
  202. 202.
    Martin EA, Brown K, Gaskell M, Al-Azzawi F, Garner RC, Boocock DJ, Mattock E, Pring DW, Dingley K, Turteltaub KW, Smith LL, White I (2003) Tamoxifen DNA damage detected in human endometrium using accelerator mass spectrometry. Cancer Res 63:8461–8465Google Scholar
  203. 203.
    Hah SS, Henderson PT, Turteltaub KW (2009) Recent advances in biomedical applications of accelerator mass spectrometry. J Biomed Sci 16:54CrossRefGoogle Scholar
  204. 204.
    Himmelstein MW, Boogaard PJ, Cadet J, Farmer PB, Kim JH, Martin EA, Persaud R, Shuker DE (2009) Creating context for the use of DNA adduct data in cancer risk assessment: II. Overview of methods of identification and quantitation of DNA damage. Crit Rev Toxicol 39:679–694CrossRefGoogle Scholar
  205. 205.
    Hah SS, Henderson PT, Turteltaub KW (2010) Towards biomarker-dependent individualized chemotherapy: exploring cell-specific differences in oxaliplatin-DNA adduct distribution using accelerator mass spectrometry. Bioorg Med Chem Lett 20:2448–2451CrossRefGoogle Scholar
  206. 206.
    Knutson CG, Skipper PL, Liberman RG, Tannenbaum SR, Marnett LJ (2008) Monitoring in vivo metabolism and elimination of the endogenous DNA adduct, M(1)dG {3-(2-deoxy-β-D-erythro-pentofuranosyl)pyrimido1,2-α-purin-10(3H)-one}, by accelerator mass spectrometry. Chem Res Toxicol 21:1290–1294CrossRefGoogle Scholar
  207. 207.
    Mundt JM, Hah SS, Sumbad RA, Schramm V, Henderson PT (2008) Incorporation of extracellular 8-oxodG into DNA and RNA requires purine nucleoside phosphorylase in MCF-7 cells. Nucleic Acids Res 36:228–236CrossRefGoogle Scholar
  208. 208.
    Hah SS, Mundt JM, Kim HM, Sumbad RA, Turteltaub KW, Henderson PT (2007) Measurement of 7,8-dihydro-8-oxo-2′-deoxyguanosine metabolism in MCF-7 cells at low concentrations using accelerator mass spectrometry. Proc Natl Acad Sci USA 104:11203–11208CrossRefGoogle Scholar
  209. 209.
    Zhou X, Liberman RG, Skipper PL, Margolin Y, Tannenbaum SR, Dedon PC (2005) Quantification of DNA strand breaks and abasic sites by oxime derivatization and accelerator mass spectrometry: application to gamma-radiation and peroxynitrite. Anal Biochem 343:84–92CrossRefGoogle Scholar
  210. 210.
    Driggers WJ, Holmquist GP, LeDoux SP, Wilson GL (1997) Mapping frequencies of endogenous oxidative damage and the kinetic response to oxidative stress in a region of mtDNA. Nucleic Acids Res 25:4362–4369CrossRefGoogle Scholar
  211. 211.
    Rodriguez H, Akman SA (1998) Mapping oxidative DNA damage at the nucleotide level. Free Radic Res 29:499–510CrossRefGoogle Scholar
  212. 212.
    Rodriguez H, Akman SA, Holmquist GP, Wilson GL, Driggers WJ, LeDoux SP (2000) Mapping oxidative DNA damage using ligation-mediated polymerase chain reaction technology. Methods 22:148–156CrossRefGoogle Scholar
  213. 213.
    Angers M, Cloutier JF, Castonguay A, Drouin R (2001) Optimal conditions to use Pfu exo (−) DNA polymerase for highly efficient ligation-mediated polymerase chain reaction protocols. Nucleic Acids Res 29:E83CrossRefGoogle Scholar
  214. 214.
    Besaratinia A, Pfeifer GP (2009) DNA-lesion mapping in mammalian cells. Methods 48:35–45CrossRefGoogle Scholar
  215. 215.
    Komura J, Riggs AD (1998) Terminal transferase-dependent PCR: a versatile and sensitive method for in vivo footprinting and detection of DNA adducts. Nucleic Acids Res 26:1807–1811CrossRefGoogle Scholar
  216. 216.
    Choi J, Kim DY, Hyun JW, Yoon SH, Choi EM, Hahm KB, Rhee KH, Chung MH (2003) Measurement of oxidative damage at individual gene levels by quantitative PCR using 8-hydroxyguanine glycosylase (OGG1). Mutat Res 523:225–235CrossRefGoogle Scholar
  217. 217.
    Fernando LP, Kurian PJ, Fidan M, Fernandes DJ (2002) Quantitation of gene-specific DNA damage by competitive PCR. Anal Biochem 306:212–221CrossRefGoogle Scholar
  218. 218.
    Lim S, Yoon H, Ryu S, Jung J, Lee M, Kim D (2006) A comparative evaluation of radiation-induced DNA damage using real-time PCR: influence of base composition. Radiat Res 165:430–437CrossRefGoogle Scholar
  219. 219.
    Rothfuss O, Gasser T, Patenge N (2010) Analysis of differential DNA damage in the mitochondrial genome employing a semi-long run real-time PCR approach. Nucleic Acids Res 38:E24CrossRefGoogle Scholar
  220. 220.
    Prabhulkar S, Li C-Z (2010) Assessment of oxidative DNA damage and repair at single cellular level via real-time monitoring of 8-OHdG biomarker. Biosens Bioelectron 26:1743–1749CrossRefGoogle Scholar
  221. 221.
    Chen Z, Lu M, Zhuang G, Wang H (2011) Enhanced bacterial biosensor for fast and sensitive detection of oxidatively DNA damaging agents. Anal Chem 83:3248–3251CrossRefGoogle Scholar
  222. 222.
    Schibel AEP, An N, Jin Q, Fleming AM, Burrows CJ, White HS (2010) Nanopore detection of 8-oxo-7,8-dihydro-2′-deoxyguanosine in immobilized single-stranded DNA via adduct formation to the DNA damage site. J Am Chem Soc 132:17992–17995CrossRefGoogle Scholar
  223. 223.
    Ramirez DC, Gomez-Mejiba SE, Mason RP (2006) Immuno-spin trapping of DNA radicals. Nat Methods 3:123–127CrossRefGoogle Scholar
  224. 224.
    Ramirez DC, Gomez-Mejiba SE, Mason RP (2007) Immuno-spin trapping analyses. Nat Protoc 2:512–522CrossRefGoogle Scholar
  225. 225.
    Ogusucu R, Rettori D, Netto LES, Augusto O (2009) Superoxide 1-mediated production of ethanol- and DNA-derived radicals in yeasts challenged with hydrogen peroxide: molecular insights into the genome instability of peroxiredoxin-null strains. J Biol Chem 284:5546–5556CrossRefGoogle Scholar
  226. 226.
    Kojima C, Ramirez DC, Tokar EJ, Himeno S, Drobna Z, Styblo M, Mason RP (2009) Requirement of arsenic biomethylation for oxidative DNA damage. J Natl Cancer Inst 101:1670–1681CrossRefGoogle Scholar
  227. 227.
    Gomez-Mejiba SE, Zhai Z, Gimenez MS, Ashby MT, Chilakapati J, Kitchin K, Mason RP, Ramirez DC (2010) Myeloperoxidase-induced genomic DNA-centered radicals. J Biol Chem 285:20062–20071CrossRefGoogle Scholar
  228. 228.
    Bhattacharjee S, Deterding LJ, Chatterjee S, Jiang J, Ehrenshaft M, Lardinois O, Ramirez DC, Tomer KB, Mason RP (2011) Site-specific radical formation in DNA induced by Cu(II)-H2O2 oxidizing system, using ESR, immuno-spin trapping, LC-MS and MS/MS. Free Radic Biol Med 50:1536–1545CrossRefGoogle Scholar
  229. 229.
    Stillwell WG, Xu HX, Adkins JA, Tannenbaum S (1989) Analysis of methylated and oxidized purines in urine by capillary gas chromatography–mass spectrometry. Chem Res Toxicol 2:94–99CrossRefGoogle Scholar
  230. 230.
    Fraga CG, Shigenaga MK, Park JW, Degan P, Ames BN (1990) Oxidative damage to DNA during aging: 8-hydroxy-2′-deoxyguanosine in rat organ and urine. Proc Natl Acad Sci USA 87:4533–4537CrossRefGoogle Scholar
  231. 231.
    Park EM, Shigenaga MK, Degan P, Kom TS, Kitzler JW, Wehr CM, Kolachana P, Ames BN (1992) Assay of excised oxidative DNA lesions: isolation of 8-oxoguanine and its nucleoside derivatives from biological fluids with a monoclonal antibody column. Proc Natl Acad Sci USA 89:3375–3379CrossRefGoogle Scholar
  232. 232.
    Degan P, Shigenaga MK, Park EM, Ames BN (1991) Immunoaffinity isolation of urinary 8-hydroxy-2′-deoxyguanosine and 8-hydroxyguanine and quantitation of 8-hydroxy-2′-deoxyguanosine in DNA by polyclonal antibodies. Carcinogenesis 12:865–871CrossRefGoogle Scholar
  233. 233.
    Shigenaga MK, Aboujaoude EN, Chen Q, Ames BN (1994) Assays of oxidative DNA damage biomarkers 8-oxo-2′-deoxyguanosine and 8-oxoguanine in nuclear DNA and biological fluids by high-performance liquid chromatography with electrochemical detection. Methods Enzymol 234:16–33CrossRefGoogle Scholar
  234. 234.
    Loft S, Poulsen HE (1998) Estimation of oxidative DNA damage in man from urinary excretion of repair products. Acta Biochim Pol 45:133–144Google Scholar
  235. 235.
    Haghdoost S, Sjölander L, Czene S, Harms-Ringdahl M (2006) The nucleotide pool is a significant target for oxidative stress. Free Radic Biol Med 41:620–626CrossRefGoogle Scholar
  236. 236.
    Toyokuni S, Tanaka T, Hattori Y, Nishiyama Y, Yoshida A, Uchida K, Hiai H, Ochi H, Osawa T (1997) Quantitative immunohistochemical determination of 8-hydroxy-2′-deoxyguanosine by a monoclonal antibody N45.1: its application to ferric nitrilotriacetate-induced renal carcinogenesis model. Lab Invest 76:365–374Google Scholar
  237. 237.
    Yoshida R, Ogawa Y, Shioji I, Yu X, Shibata E, Mori I, Kubota H, Kishida A, Hisanaga H (2001) Urinary 8-oxo-7,8-dihydro-2′-deoxyguanosine and biopyrrins levels among construction workers with asbestos exposure history. Ind Health 39:186–188CrossRefGoogle Scholar
  238. 238.
    Yoshida R, Ogawa Y, Kasai H (2002) Urinary 8-oxo-7,8-dihydro-2′-deoxyguanosine values measured by an ELISA correlated well with measurements by high-performance liquid chromatography with electrochemical detection. Cancer Epidemiol Biomarkers Prev 11:1076–1081Google Scholar
  239. 239.
    Chiou CC, Chang P-Y, Chan EC, Wu T-L, Tsao K-C, Wu JT (2003) Urinary 8-hydroxydeoxyguanosine and its analogs as DNA markers of oxidative stress: development of an ELISA and measurement in both bladder and prostate cancers. Clin Chim Acta 334:87–94CrossRefGoogle Scholar
  240. 240.
    Ihara Y, Takata H, Tanabe Y, Nobukuni K, Hayabara T (2005) Influence of repetitive transcranial magnetic stimulation on disease severity and oxidative stress markers in the cerebrospinal fluid of patients with spinocerebellar degeneration. Neurol Res 27:310–313CrossRefGoogle Scholar
  241. 241.
    Haghdoost S, Czene S, Naslund I, Skog S, Harms-Ringdahl M (2005) Extracellular 8-oxo-dG as a sensitive parameter for oxidative stress in vivo and in vitro. Free Radic Res 39:153–162CrossRefGoogle Scholar
  242. 242.
    Cooke MS, Singh R, Hall GK, Duarte TL, Farmer PF, Evans MD (2006) Evaluation of enzyme-linked immunosorbent assay and liquid chromatography–tandem mass spectrometry methodology for the analysis of 8-oxo-7,8-dihydro-2′-deoxyguanosine in saliva and urine. Free Radic Biol Med 41:1829–1836CrossRefGoogle Scholar
  243. 243.
    Cooke MS, Barregard L, Mistry V, Potdar N, Rozalski R, Gackowski D, Siomek A, Foksinski M, Svoboda P, Kasai H, Konje JC, Sallsten G, Evans MD, Olinski R (2009) Interlaboratory comparison of methodologies for the measurement of urinary 8-oxo-7,8-dihydro-2′-deoxyguanosine. Biomarkers 14:103–110CrossRefGoogle Scholar
  244. 244.
    Breton J, Sichel F, Bianchini F, Prevost V (2003) Measurement of 8-hydroxy-2′-deoxyguanosine by a commercially available ELISA test: comparison with HPLC/elctrochemical detection in calf thymus DNA and determination in human serum. Anal Lett 36:123–134CrossRefGoogle Scholar
  245. 245.
    Song M-F, Li Y-S, Ootsuyama Y, Kasai H, Kawai K, Ohta M, Eguchi Y, Yamato M, Matsumoto Y, Yoshida R, Ogawa Y (2009) Urea, the most abundant component in urine, cross-reacts with a commercial 8-OHdG ELISA kit and contributes to over-estimation of urinary 8-OHdG. Free Radic Biol Med 47:41–46CrossRefGoogle Scholar
  246. 246.
    Cooke M (2009) A commentary on “Urea, the most abundant component in urine, cross-reacts with a commercial 8-OHdG ELISA kit and contributes to overestimation of urinary 8-OHdG”. What is ELISA detecting? Free Radic Biol Med 47:30–31CrossRefGoogle Scholar
  247. 247.
    ESCULA, Evans MD, Olinski R, Loft S, Cooke MS (2010) Toward consensus of urinary 8-oxo-7,8-dihydro-2′-deoxyguanosine as a noninvasive biomarker of oxidative stress. FASEB J 24:1249–1260CrossRefGoogle Scholar
  248. 248.
    Garratt LW, Mistry V, Singh R, Sandhu J, Sheil B, Cooke MS, Sly PD (2010) Interpretation of urinary 8-oxo-7,8-dihydro-2′-deoxyguanosine is adversely affected by methodological inaccuracies when using a commercial ELISA. Free Radic Biol Med 48:1460–1464CrossRefGoogle Scholar
  249. 249.
    Kasai H, Svoboda P, Yamasaki S, Kawai K (2005) Simultaneous determination of 8-hydroxydeoxyguanosine, a marker of oxidative stress and creatinine, a standardization compound in urine. Ind Health 43:333–336CrossRefGoogle Scholar
  250. 250.
    Tamae K, Kawai K, Yamasaki S, Kawanami K, Ikeda M, Takahashi K, Miyamoto T, Kato N, Kasai H (2009) Effect of age, smoking and other lifestyle factors on urinary 7-methyguanine and 8-hydroxydeoxyguanosine. Cancer Sci 100:715–721CrossRefGoogle Scholar
  251. 251.
    Kato D, Komoriya M, Nakamoto K, Kurita R, Hirono S, Niwa D (2011) Electrochemical determination of oxidative damaged DNA with high sensitivity and stability using a nanocarbon film. Anal Sci 27:703–707CrossRefGoogle Scholar
  252. 252.
    Ravanat J-L, Guicherd P, Tuce Z, Cadet J (1999) Simultaneous determination of five oxidative DNA lesions in human urine. Chem Res Toxicol 12:802–808CrossRefGoogle Scholar
  253. 253.
    Gackowski D, Rozalski R, Roszkowski K, Jawien A, Foksinski M, Olinski R (2001) 8-Oxo-7,8-dihydroguanine and 8-oxo-7,8-dihydro-2′-deoxyguanosine levels in human urine do not depend on diet. Free Radic Res 35:825–832CrossRefGoogle Scholar
  254. 254.
    Weimann A, Belling D, Poulsen HE (2002) Quantification of 8-oxo-guanine and guanine at the nucleobase, nucleoside and deoxynucleoside forms in human urine by high-performance liquid chromatography–electrospray tandem mass spectrometry. Nucleic Acids Res 30:E7CrossRefGoogle Scholar
  255. 255.
    Sabatini L, Barbieri A, Tosi M, Roda A, Violante FS (2005) A method for routine quantitation of urinary 8-hydroxy-2′-deoxyguanosine based on solid-phase extraction and micro-high-performance liquid chromatography/electrospray ionization tandem mass spectrometry. Rapid Commun Mass Spectrom 19:147–152CrossRefGoogle Scholar
  256. 256.
    Hu CW, Wang CJ, Chang LW, Chao MR (2006) Clinical-scale high throughput analysis of urinary 8-oxo-7,8-dihydro-2′-deoxyguanosine by isotope-dilution liquid chromatography–tandem mass spectrometry with on-line solid-phase extraction. Clin Chem 52:1381–1388CrossRefGoogle Scholar
  257. 257.
    Malayappan B, Garrett TJ, Segal M, Leeuwenburgh C (2007) Urinary analysis of 8-oxoguanine, 8-oxoguanosine, fapyguanine and 8-oxo-2′-deoxyguanosine by high-performance liquid chromatography–electrospray tandem mass spectrometry as a measure of oxidative stress. J Chromatogr A 1167:54–62CrossRefGoogle Scholar
  258. 258.
    Harri M, Kasai H, Mori T, Tornaeus J, Savela K, Peltonen K (2007) Analysis of 8-hydroxy-2′-deoxyguanosine in urine using high performance liquid chromatography–electrospray tandem mass spectrometry. J Chromatogr B 853:242–246CrossRefGoogle Scholar
  259. 259.
    Evans MD, Singh R, Mistry V, Sandhu K, Farmer PB, Cooke MS (2008) Analysis of urinary 8-oxo-7,8-dihydro-purine-2′-deoxyribonucleosides by LC-MS/MS and improved ELISA. Free Radic Res 42:831–840CrossRefGoogle Scholar
  260. 260.
    Crow B, Bishop M, Kovalcik K, Norton D, George J, Bralley JA (2008) A simple and cost effective method for the quantification of 8-hydroxy-2′-deoxyguanosine from urine using liquid chromatography tandem mass spectrometry. Biomed Chromatogr 22:394–401CrossRefGoogle Scholar
  261. 261.
    Henriksen T, Hillestrøm PR, Poulsen HE, Weimann A (2009) Automated method for the direct analysis of 8-oxo-guanosine, and 8-oxo-2′-deoxyguanosine in human urine using ultraperformance liquid chromatography and tandem mass spectrometry. Free Radic Biol Med 47:629–635CrossRefGoogle Scholar
  262. 262.
    Andreoli R, Manini P, De Palma G, Alinovi R, Goldoni G, Niessen WMA, Mutti A (2010) Quantitative determination of urinary 8-oxo-7,8-dihydro-2′-deoxyguanosine, 8-oxo-7,8-dihydroguanine, 8-oxo-7,8-dihydroguanosine, and their non-oxidized forms: daily concentration profile in healthy volunteers. Biomarkers 15:221–231CrossRefGoogle Scholar
  263. 263.
    Lee KF, Chung WY, Benzie IE (2010) Urine 8-oxo-7,8-dihydro-2′-deoxyguanosine (8-oxodG), a specific marker of oxidative stress, using direct isocratic LC-MS/MS: method evaluation and application in study of biological variation in healthy adults. Clin Chim Acta 411:416–422CrossRefGoogle Scholar
  264. 264.
    Andreoli R, Mutti A, Goldoni M, Manini P, Apostoli P, De Palma G (2011) Reference ranges of urinary biomarkers of oxidized guanine in (2′-deoxy)ribonucleosides and nucleic acids. Free Radic Biol Med 50:254–261CrossRefGoogle Scholar
  265. 265.
    Broedbaek K, Weimann A, Stovgaard ES, Poulsen HE (2011) Urinary 8-oxo-7,8-dihydro-2′-deoxyguanosine as a biomarker of type 2 diabetes. Free Radic Biol Med 51:1473–1479CrossRefGoogle Scholar
  266. 266.
    Mistry V, Teichert F, Sandhu JK, Singh R, Evans MD, Farmer PB, Cooke MS (2011) Non-invasive assessment of oxidatively damaged DNA: liquid chromatography–tandem mass spectrometry analysis of urinary 8-oxo-7,8-dihydro-2′-deoxyguanosine. Methods Mol Biol 682:279–289CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Jean Cadet
    • 1
    • 2
    Email author
  • Thierry Douki
    • 1
  • Jean-Luc Ravanat
    • 1
  • J. Richard Wagner
    • 2
  1. 1.Laboratoire “Lésions des Acides Nucléiques”, SCIB-UMR-E n°3 (CEA/UJF) Institut Nanosciences et CryogénieCEA/GrenobleGrenoble Cedex 9France
  2. 2.Département de Médecine Nucléaire et Radiobiologie, Faculté de médecine et des sciences de la santéUniversité de SherbrookeSherbrookeCanada

Personalised recommendations