Bioanalytical Reviews

, Volume 3, Issue 2–4, pp 67–94 | Cite as

Can peroxygenase and microperoxidase substitute cytochrome P450 in biosensors

  • Aysu Yarman
  • Lei Peng
  • Yunhua Wu
  • Amay Bandodkar
  • Nenad Gajovic-Eichelmann
  • Ulla Wollenberger
  • Martin Hofrichter
  • René Ullrich
  • Katrin Scheibner
  • Frieder W. Scheller
Article

Abstract

Aromatic peroxygenase (APO) from the basidiomycetous mushroom Agrocybe aegerita (AaeAPO) and microperoxidases (MPs) obtained from cytochrome c exhibit a broad substrate spectrum including hydroxylation of selected aromatic substrates, demethylation and epoxidation by means of hydrogen peroxide. It overlaps with that of cytochrome P450 (P450), making MPs and APOs to alternate recognition elements in biosensors for the detection of typical P450 substrates. Here, we discuss recently developed approaches using microperoxidases and peroxygenases in view of their potential to supplement P450 enzymes as recognition elements in biosensors for aromatic compounds. Starting as early as the 1970s, the direct electron transfer between electrodes and the heme group of heme peptides called microperoxidases has been used as a model of oxidoreductases. These MP-modified electrodes are used as hydrogen peroxide detectors based on the catalytic current generated by electrically contacted microperoxidase molecules. A similar catalytic reaction has been obtained for the electrode-immobilised heme protein AaeAPO. However, up to now, no MP-based sensors for substrates have been described. In this review, we present biosensors which indicate 4-nitrophenol, aniline, naphthalene and p-aminophenol based on the peroxide-dependent substrate conversion by electrode-immobilised MP and AaeAPO. In these enzyme electrodes, the signal is generated by the conversion of all substrates, thus representing in complex media an overall parameter. The performance of these sensors and their further development are discussed in comparison with P450-based electrodes.

Keywords

Cytochrome P450 Aromatic peroxygenase Microperoxidase Biosensors 

References

  1. 1.
    Lohmann W, Karst U (2008) Biomimetic modelling of oxidative drug metabolism: strategies, advantages and limitations. Anal Bioanal Chem 391:79–96CrossRefGoogle Scholar
  2. 2.
    Nagatsu Y, Higuchi T, Hirobe M (1990) Application of chemical P-450 systems to study drug metabolism. III. The metabolism of 3-isobutyryl-2-isopropylpayrazolo[1,5-α]pyridine. Chem Pharm Bull 38:400–403Google Scholar
  3. 3.
    Hofrichter M, Ullrich R, Pecyna M, Kinne M, Kluge M, Aranda E, Liers C et al. (2009) Aromatic peroxygenases from mushrooms: extracellular heme-thiolate proteins of a new enzyme sub-subclass? In: Shoun H, Ohkawa H (eds) 16th International Conference on Cytochrome P450 (Nago, Okinawa, Japan), Medimond (International Proceedings), Bologna, Italy, pp 83–88Google Scholar
  4. 4.
    Renneberg R, Scheller F, Ruckpaul K, Pirrwitz J, Mohr P (1978) NADPH and H2O2-dependent reactions of cytochrome P-450LM compared with peroxidase catalysis. FEBS Lett 96:349–353CrossRefGoogle Scholar
  5. 5.
    Bistolas N, Wollenberger U, Jung C, Scheller FW (2005) Cytochrome P450 biosensors—a review. Biosens Bioelectron 20:2408–2423CrossRefGoogle Scholar
  6. 6.
    Rabe KS, Gandubert VJ, Spengler M, Erkelenz M, Niemeyer CM (2008) Engineering and assaying of cytochrome P450 biocatalysts. Anal Bioanal Chem 392:1059–1073CrossRefGoogle Scholar
  7. 7.
    Sadeghi SJ, Fantuzzi A, Gilardi G (2011) Breakthrough in P450 bioelectrochemistry and future perspectives. Biochim Biophys Acta 1814:237–248Google Scholar
  8. 8.
    Shumyantseva VV, Bulko TV, Suprun EV, Chalenko YM, Vagin MY, Rudakov YO, Shatskaya MA, Archakov AI (2011) Electrochemical investigations of cytochrome P450. BBA 1814:94–101Google Scholar
  9. 9.
    Denisov IG, Makris TM, Sligar SG, Schlichting I (2005) Structure and chemistry of cytochromes P450. Chem Rev 105:2253–2277CrossRefGoogle Scholar
  10. 10.
    Theâvenot DR, Toth K, Durst RA, Wilson GS (1999) Electrochemical biosensors: recommended definitions and classification. Pure Appl Chem 71:2333–2348CrossRefGoogle Scholar
  11. 11.
    Clark LC, Lyons C (1962) Electrode systems for continuous monitoring in cardiovascular surgery. Ann N Y Acad Sci Bd 102:29–45CrossRefGoogle Scholar
  12. 12.
    Brandon EFA, RAaeAPO CD, Meijerman I, Beijnen JH, Schellens JHM (2003) An update on in vitro test methods in human hepatic drug biotransformation research: pros and cons. Toxicaol Appl Pharmacol 189:233–246CrossRefGoogle Scholar
  13. 13.
    Pelkonen O, Turpeinen M, Uusitalo J, Rautio A, Raunio H (2005) Prediction of drug metabolism and interactions on the basis of in vitro investigations. Basic Clin Pharmacol Toxicol 96:167–175CrossRefGoogle Scholar
  14. 14.
    Lewis DFV (2001) Guide to cytochromes P450: structure and function. Taylor and Francis, New YorkCrossRefGoogle Scholar
  15. 15.
    Ortiz de Montellano PR (2004) Cytochrome P450: structure, mechanism, and biochemistry, 3rd edn. Springer, New York, p 689Google Scholar
  16. 16.
    Cirino PC, Arnold FH (2003) A self-sufficient peroxide-driven hydroxylation biocatalyst. Angew Chem Int Ed Engl 28:3299–3301CrossRefGoogle Scholar
  17. 17.
    Scheller F, Renneberg R, Strnad G, Pommerening K, Mohr P (1977) Electrochemical aspects of cytochrome P-450 system from liver microsomes. Bioelectrochem Bioenerg 4:500–507CrossRefGoogle Scholar
  18. 18.
    Tsotsou GE, Cass AEG, Gilardi G (2002) High throughput assay for cytochrome P450 BM3 for screening libraries of substrates and combinatorial mutants. Biosens Bioelectron 17:113–119CrossRefGoogle Scholar
  19. 19.
    Eggers HM, Halsall HB, Heineman WR (1982) Enzyme immunoassay with flow-amperometric detection of NADH. Clin Chem 28:1848–1851Google Scholar
  20. 20.
    Elving PJ, Bresnahan W, Moiroux J, Samec Z (1982) NAD/NADH as a model redox system: mechanism, mediation, modification by the environment. Bioelectrochem Bioenerg 2:365–378CrossRefGoogle Scholar
  21. 21.
    Wodnicka M, Guarino RD, Hemperly JJ, Timmins MR, Stitt D, Pitner JB (2000) Novel fluorescent technology platform for high throughput cytotoxicity and proliferation assays. J Biomol Screen 5:141–152CrossRefGoogle Scholar
  22. 22.
    Yu D, Blankert B, Bodoki E, Viré J-C, Sandulescu R, Nomura A, Kauffmann J-M (2006) Amperometric biosensors based on horseradish peroxidase-immobilised magnetic microparticles. Sens Actuators, B 113:149–154CrossRefGoogle Scholar
  23. 23.
    Yu D, Blankert B, Kauffmann J-M (2007) Development of amperometric horseradish peroxidase based biosensors for clozapine and for the screening for thiol compounds. Biosens Bioelectron 22:2707–2711CrossRefGoogle Scholar
  24. 24.
    Yu D, Renedo OD, Blankert B, Bodoki E, Sima V, Sandulescu R, Arcos J, Kauffmann J-M (2006) A peroxidase-based biosensor supported by nanoporous silica microparticles for acetaminophen biotransformation and inhibition studies. Electroanalysis 18:1637–1642CrossRefGoogle Scholar
  25. 25.
    Scheller W, Jin W, Ehrentreich-Förster E, Ge B, Lisdat F, Büttemeier R, Wollenberger U, Scheller FW (1999) Cytochrome C based superoxide sensor for in vivo application. Electroanalysis 11:703–706CrossRefGoogle Scholar
  26. 26.
    Wu Y, Liu X, Wang C (2011) An amperometric biosensor based on rat cytochrome p450 1A1 for benzo[a]pyrene determination. Biosens Bioelectron 26:2177–2182CrossRefGoogle Scholar
  27. 27.
    Estabrook RW, Faulkner KM, Shet MJ, Fisher CW (1996) In: Waterman MR, Johnson EF (eds) Methods in enzymology, vol 272. Cytochrome P450 (Part B). Academic Press, pp 44–51Google Scholar
  28. 28.
    Eddowes MJ, Hill HAO (1977) Novel method for the investigation of the electrochemistry of metalloproteins: cytochrome c. J Chem Soc Chem Commun 21:771b–772CrossRefGoogle Scholar
  29. 29.
    Yeh P, Kuwana T (1977) Reversible electron reaction of cytochrome c. Chem Lett 10:1145–1148CrossRefGoogle Scholar
  30. 30.
    Ikeda T (1992) Electrochemical bionsensors based on biocatalyst electrodes. Bull Electrochem 8:45–159Google Scholar
  31. 31.
    Degani Y, Heller A (1987) Direct electrical communication between chemically modified enzymes and metal-electrodes. 1. Electron-transfer from glucose-oxidase to metal-electrodes via electron relays, bound covalently to the enzyme. J Phys Chem 91:1285–1289CrossRefGoogle Scholar
  32. 32.
    Shumyantseva VV, Bulko TV, Bachmann TT, Bilitewski U, Schmid RD, Archakov AI (2000) Electrochemical reduction of flavocytochromes 2B4 and 1A2 and their catalytic activity. Arch Biochem Biophys 377:43–48CrossRefGoogle Scholar
  33. 33.
    Gilardi G, Fantuzzi A, Sadeghi SJ (2001) Engineering and design in the bioelectrochemistry of metalloproteins. Curr Opin Struct Biol 11:491–499CrossRefGoogle Scholar
  34. 34.
    Gilardi G, Meharenna YT, Tsotsou GE, Sadeghi SJ, Fairhead M, Giannini S (2002) Molecular Lego: design of molecular assemblies of P450 enzymes for nanobiotechnology. Biosens Bioelectron 17:133–145CrossRefGoogle Scholar
  35. 35.
    Wong TS, Schwaneberg U (2003) Protein engineering in bioelectrocatalysis. Curr Opin Biotech 14:590–596CrossRefGoogle Scholar
  36. 36.
    Ullrich R, Nüske J, Scheibner K, Spantzel J, Hofrichter M (2004) Novel haloperoxidase from the agaric basidiomycete Agrocybe aegerita oxidizes aryl alcohols and aldehydes. Appl Environ Microbiol 70:4575–4581CrossRefGoogle Scholar
  37. 37.
    Ullrich R, Hofrichter M (2005) The haloperoxidase of the agaric fungus Agrocybe aegerita hydroxylates toluene and naphthalene. FEBS Lett 579:6247–6250CrossRefGoogle Scholar
  38. 38.
    Kinne M, Poraj-Kobielska M, Aranda E, Ullrich R, Hammel KE, Scheibner K, Hofrichter M (2009) Regioselective preparation of 5-hydroxypropranolol and 4′-hydroxydiclofenac with a fungal peroxygenase. Bioorg Med Chem Lett 19:3085–3087CrossRefGoogle Scholar
  39. 39.
    Kinne M, Poraj-Kobielska M, Ralph SA, Ullrich R, Hofrichter M, Hammel KE (2009) Oxidative cleavage of diverse ethers by an extracellular fungal peroxygenase. J Biol Chem 284:29343–29349CrossRefGoogle Scholar
  40. 40.
    Hofrichter M, Ullrich R (2010) New trends in fungal biooxidation. In: Hofrichter M, Esser K (eds) The Mycota, volume X. Industrial applications, 2nd edn. Springer, Berlin, pp 425–449Google Scholar
  41. 41.
    Kluge M, Ullrich R, Dolge C, Scheibner K, Hofrichter M (2009) Hydroxylation of naphthalene by aromatic peroxygenase from Agrocybe aegerita proceeds via oxygen transfer from H2O2 and intermediary epoxidation. Appl Microbiol Biotechnol 81:1071–1076CrossRefGoogle Scholar
  42. 42.
    Aranda E, Ullrich R, Hofrichter M (2010) Conversion of polycyclic aromatic hydrocarbons, methyl naphthalenes and dibenzofuran by two fungal peroxygenases. Biodegradation 21:267–281CrossRefGoogle Scholar
  43. 43.
    Pecyna MJ, Ullrich R, Bittner B, Clemens A, Scheibner K, Schubert R, Hofrichter M (2009) Molecular characterization of aromatic peroxygenase from Agrocybe aegerita. Appl Microbiol Biotechnol 84:885–897CrossRefGoogle Scholar
  44. 44.
    Hofrichter M, Ullrich R, Pecyna MJ, Liers C, Lundell T (2010) New and classic families of secreted fungal heme peroxidases. Appl Microbiol Biotechnol 87:871–897CrossRefGoogle Scholar
  45. 45.
    Hofrichter M, Ullrich R (2006) Heme-thiolate haloperoxidases: versatile biocatalysts with biotechnological and environmental significance. Appl Microbiol Biotechnol 71:276–288CrossRefGoogle Scholar
  46. 46.
    Ullrich R, Liers C, Schimpke S, Hofrichter M (2009) Purification of homogeneous forms of fungal peroxygenase. Biotechnol J 4:1619–1626CrossRefGoogle Scholar
  47. 47.
    Kinne M, Zeisig C, Ullrich R, Kayser G, Hammel KE, Hofrichter M (2010) Stepwise oxygenations of toluene and 4-nitrotoluene by a fungal peroxygenase. Biochem Biophys Res Commun 397:18–21CrossRefGoogle Scholar
  48. 48.
    Kluge MG, Ullrich R, Scheibner K, Hofrichter M (2007) Spectrophotometric assay for detection of aromatic hydroxylation catalysed by fungal haloperoxidase-peroxygenase. Appl Microbiol Biotechnol 75:1473–1478CrossRefGoogle Scholar
  49. 49.
    Gonzalez FJ (2005) Role of cytochromes P450 in chemical toxicity and oxidative stress: studies with P4502E1. Mutat Res 569:101–110CrossRefGoogle Scholar
  50. 50.
    Peng L, Wollenberger U, Hofrichter M, Ullrich R, Scheibner K, Scheller FW (2010) Bioelectrocatalytic properties of Agrocybe aegerita peroxygenase. Electrochim Acta 55:7809–7813CrossRefGoogle Scholar
  51. 51.
    Tassaneeyakul W, Veronese ME, Birkett DJ, Gonzalez FJ, Miners JO (1993) Validation of 4-nitrophenol as an in vitro substrate probe for human liver P4502E1 using cDNA expression and microsomal kinetic techniques. Biochem Pharmacol 46:1975–1981CrossRefGoogle Scholar
  52. 52.
    Kinne M, Ullrich R, Hammel KE, Hofrichter M (2008) Regioselective preparation of (R)-2-(4-Hydroxyphenoxy)propionic acid with a fungal peroxygenase. Tetrahedron Lett 49:5950–5953CrossRefGoogle Scholar
  53. 53.
    Ullrich R, Dolge C, Kluge M, Hofrichter M (2008) Pyridine as novel substrate for regioselective oxygenation with aromatic peroxygenase from Agrocybe aegerita. FEBS Lett 582:4100–4106CrossRefGoogle Scholar
  54. 54.
    Ullrich R, Hofrichter M (2007) Enzymatic hydroxylation of aromatic compounds. Cell Mol Life Sci 64:271–293CrossRefGoogle Scholar
  55. 55.
    Makris TM, Denisov I, Schlichting I, Sligar SG (2005) Activation of molecular oxygen by cytochrome P450. In: Ortiz De Montellano PR (ed) Cytochrome P450 - Structure, Mechanism and Biochemistry, 3rd edn. Kluwer Academic/Plenum Publishers, New York, pp 149–182Google Scholar
  56. 56.
    Piontek K, Ullrich R, Liers C, Diederichs K, Plattner D, Hofrichter M (2010) Crystallization of a 45 kDa peroxygenase/peroxidase from the mushroom Agrocybe aegerita and structure determination by SAD utilizing only the heme iron. Acta Crystallogr Sect F Struct Biol Cryst Commun 66:693–698CrossRefGoogle Scholar
  57. 57.
    Kinne M, Poraj-Kobielska M, Ullrich R, Nousiainen P, Sipilä J, Scheibner K, Hammel K, Hofrichter M (2011) Oxidative cleavage of non-phenolic beta-O-4 lignin model dimers by an extracellular aromatic peroxygenase. Holzforschung, in pressGoogle Scholar
  58. 58.
    Oku Y, Ohtaki A, Kamitori S, Nakamura N, Yohda M, Ohno H, Kawarabayashi Y (2004) Structure and direct electrochemistry of cytochrome P-450 from the thermoacidophilic crenarchaeon, Sulfolobus tokodaii strain 7. J Inorg Biochem 98:1194–1197CrossRefGoogle Scholar
  59. 59.
    Estavillo C, Lu Z, Jansson I, Schenkman JB, Rusling JF (2003) Epoxidation of styrene by human cyt P-450 1A2 by thin film electrolysis and peroxide activation compared to solution reactions. Biophysical Chem 104:291–296CrossRefGoogle Scholar
  60. 60.
    Shumyantseva VV, Ivanov YD, Bistolas N, Scheller FW, Archakov AI, Wollenberger U (2004) Direct electron transfer of cytochrome P450 2B4 at electrodes modified with non-ionic detergent and colloidal clay nanoparticles. Anal Chem 76:6046–6052CrossRefGoogle Scholar
  61. 61.
    Rusling JF, Zhou L, Munge B, Yang J, Estavillo C, Schenkmann JB (2000) Applications of polyion filmss containing biomolecules to sensing toxicity. Faraday Discuss 116:77–87CrossRefGoogle Scholar
  62. 62.
    Laviron E (1979) General expression of the linear potential sweep voltammogram in the case of diffusionless electrochemical systems. J Electroanal Chem 101:19–28CrossRefGoogle Scholar
  63. 63.
    Kamin RA, Wilson GS (1980) Rotating ring-disk enzyme electrode for biocatalysis kinetic studies and characterization of the immobilised enzyme layer. Anal Chem 52:1198–1205CrossRefGoogle Scholar
  64. 64.
    Xiao Y, Ju HX, Chen HY (2000) Direct Electrochemistry of Horseradish Peroxidase İmmobilised on a Colloid/Cysteamine-Modified Gold Electrode. Anal Biochem 278:22–28CrossRefGoogle Scholar
  65. 65.
    Anh DH, Ullrich R, Benndorf D, Svatoś A, Muck A, Hofrichter M (2007) The coprophilous mushroom Coprinus radians secretes a haloperoxidase that catalyzes aromatic peroxygenation. Appl Eviron Microbiol 73:5477–5485CrossRefGoogle Scholar
  66. 66.
    Veeger C (2002) Does P450-type catalysis proceed through a peroxo-iron intermediate?A review of studies with microperoxidase. J Inorg Biochem 91:35–45CrossRefGoogle Scholar
  67. 67.
    Peng L, Wollenberger U, Kinne M, Hofrichter Ullrich R, Schreibner K, Fischer A, Scheller FW (2010) Peroxygenase based sensor for aromatic compounds. Biosens Bioelectron 26:1432–1436CrossRefGoogle Scholar
  68. 68.
    Kafi AKM, Chen AC (2009) A novel amperometric biosensor for the detection of nitrophenol. Talanta 79:97–102CrossRefGoogle Scholar
  69. 69.
    England PA, Harford-Cross CF, Stevenson JA, Rouch DA, Wong LL (1998) The oxidation of naphthalene and pyrene by cytochrome P450cam. FEBS Lett 424:271–274CrossRefGoogle Scholar
  70. 70.
    Durliat H, Courteix A, Comtat M (1992) Role of horseradish peroxidase in the catalytic hydroxylation of phenol. J Mol Catal 75:357–369CrossRefGoogle Scholar
  71. 71.
    Monostory K, Hazai E, Vereczkey L (2004) Inhibition of cytochrome P450 enzymes participating in p-nitrophenol hydroxylation by drugs known as CYP2E1 inhibitors. Chem Biol Interact 147:331–340CrossRefGoogle Scholar
  72. 72.
    Adams PA (2001) In: Everse J, Everse KE, Grisham MB (eds) Peroxidases in chemistry and biology, vol II. CRC, Boca Raton, pp 174–176Google Scholar
  73. 73.
    Marques MH (2007) Insights into porphyrin chemistry provided by the microperoxidases, the haempeptides derived from cytochrome c. Dalton Trans 39:4371–4385CrossRefGoogle Scholar
  74. 74.
    Wilson MT, Ranson J, Masiakowski P, Czarnecka E, Brunori M (1977) A kinetic study of the pH dependent properties of the ferric undecapeptide of cytochrome c (microperoxidase). Eur J Biochem 77:193–199Google Scholar
  75. 75.
    Braun M, Thöny-Meyer L (2004) Biosynthesis of artificial microperoxidases by exploiting the secretion and cytochrome c maturation apparatuses of Escherichia coli. PNAS 101:12830–12835CrossRefGoogle Scholar
  76. 76.
    Ni TW, Tezcan FA (2010) Structural characterization of a microperoxidase inside a metal-directed protein cage. Angew Chem Int Ed 49:7014–7018CrossRefGoogle Scholar
  77. 77.
    Laszlo JA, Compton DL (2002) Comparison of peroxidase activities of hemin, cytochrome c and microperoxidase-11 in molecular solvents and imidazolium-based ionic liquids. J Mol Catal B: Enzym 18:109–120CrossRefGoogle Scholar
  78. 78.
    Vazquez-Duhalt R (1999) Cytochrome c as a biocatalyst. J Mol Catal B: Enzym 7:241–249CrossRefGoogle Scholar
  79. 79.
    Deere J, Magner E, Wall EJ, Hodnett BK (2003) Oxidation of ABTS by silicate-immobilised cytochrome c in nonaqueous solutions. Biotechnol Prog 19:1238–1243CrossRefGoogle Scholar
  80. 80.
    Adams PA (1990) The peroxidasic activity of the haem octapeptide microperoxidase-8 (MP-8): the kinetic mechanism of the catalytic reduction of H2O2 by MP-8 using 2,2′-azinobis-(3-ethylbenzothiazoline-6-sulphonate) (ABTS) as reducing substrate. J Chem Soc, Perkin Trans 2:1407–1414Google Scholar
  81. 81.
    Spee JH, Boersma MG, Veeger C, Samyn B, Van Beeumen J, Warmerdam G, Canters GW, Van Dongen WMAM, Rietjens IMCM (1996) The influence of the peptide chain on the kinetics and stability of microperoxidases. Eur J Biochem 24:215–220CrossRefGoogle Scholar
  82. 82.
    Osman AM, Koerts J, Boersma MG, Boeren S, Veeger C, Rietjens IMCM (1996) Heme-(hydro)peroxide mediated O- and N-dealkylation: a study with microperoxidase. Eur J Biochem 240:232–238CrossRefGoogle Scholar
  83. 83.
    Boersma MG, Primus J-L, Koerts J, Veeger C, Rietjens IMCM (2000) Heme-(hydro)peroxide mediated O- and N-dealkylation: a study with microperoxidase. Eur J Biochem 267:6673–6678CrossRefGoogle Scholar
  84. 84.
    Rusvaia E, Végha M, Kramera M, Horvátha I (1988) Hydroxylation of aniline mediated by heme-bound oxy-radicals in a heme peptide model system. Biochem Pharmacol 37:4574–4577CrossRefGoogle Scholar
  85. 85.
    Sharma VS, Isaacson RA, John ME, Waterman MR, Chevion M (1983) Reaction of nitric oxide with heme proteins: studies on metmyoglobin, opossum methemoglobin, and microperoxidase. Bioelectrochemistry 22:3897–3902Google Scholar
  86. 86.
    Dorosvka-Taran V, Posthumus MA, Boeren S, Boersma MG, Teunis CJ, Rietjens IMCM, Veegere C (1998) Oxygen exchange with water in heme-oxo intermediates during H2O2-driven oxygen incorporation in aromatic hydrocarbons catalysed by microperoxidase-8. Eur J Biochem 253:659–668CrossRefGoogle Scholar
  87. 87.
    Reszka KJ, McCormick ML, Britigan BE (2003) Oxidation of anthracycline antiicancer agents by the peroxidase mimic microperoxidase 11 and hydrogen peroxide. Free Radical Biol Med 35:78–93CrossRefGoogle Scholar
  88. 88.
    Reszka KJ, O’Malley Y, McCormick ML, Denning GM, Britigan BE (2003) Oxidation of pyocyanin, a cytotoxic product from Pseudomonas aeruginase, by microperoxidase 11 and hydrogen peroxide. Free Radical Biol Med 11:1448–1459Google Scholar
  89. 89.
    Rodriguez M, Claparols C, Robert A, Meunier B (2002) Alkylation of microperoxidase-11 by the antimalarial drug artemisinin. ChemBioChem 11:1147–1149CrossRefGoogle Scholar
  90. 90.
    Mohajerani B, Soleymani-Jamarani M, Nazari K, Mahmoudib A, Moosavi-Movahedi AA (2008) Microperoxidase-11-NH2-FSM16 biocatalyst: a heterogeneous enzyme model for peroxidative reactions. J Mol Catal Chem 296:28–35CrossRefGoogle Scholar
  91. 91.
    Jeng WY, Tsai YH, Chuang WJ (2004) The catalase activity of Nalpha-acetyl-microperoxidase-8. Peptide Res 64:104–109CrossRefGoogle Scholar
  92. 92.
    Ranweiler JS, Wilson GS (1976) Structural effects on cytochrome electron transfer: properties of HPI-65 from horse heart cytochrome C. Biolectrochem Bioenerg 3:113–122CrossRefGoogle Scholar
  93. 93.
    Lötzbeyer T, Schuhmann W, Schmidt H-L (1997) Minienzymes: a review for the development of reagentless amperometric biosensors based on direct electron-transfer process. Bioelectrochem Bioenerg 42:1–6CrossRefGoogle Scholar
  94. 94.
    Santucci R, Reinhard H, Brunori M (1988) Direct electrochemistry of the undecapeptide from cytochrome c (microperoxidase) at a glassy carbon electrode. J Am Chem Soc 110:8536–8537CrossRefGoogle Scholar
  95. 95.
    Razumas V, Kazlauskaite J, Ruzgas T, Kulys J (1992) Bioelectrochemistry of microperoxidases. Bioelectrochem Bioenerg 28:159–176CrossRefGoogle Scholar
  96. 96.
    Ruzgas T, Gaigalas A, Gorton L (1999) Diffusionless electron transfer of microperoxidase-11 on gold electrodes. J Electroanal Chem 469:123–131CrossRefGoogle Scholar
  97. 97.
    Kulys J, Drungiliene A, Wollenberger U, Scheller F (1998) Membrane covered carbon paste electrode for the electrochemical determination of peroxidase and microperoxidase in a flow system. Bioelectrochem Bioenerg 45:227–232CrossRefGoogle Scholar
  98. 98.
    Tatsuma T, Watanabe T (1991) Peroxidase model electrodes: sensing of imidazole derivatives with heme peptide-modified electrode. Anal Chem 64:143–147CrossRefGoogle Scholar
  99. 99.
    Tatsuma T, Watanabe T (1992) Peroxidase model electrodes: heme peptide modified electrodes as reagentless sensors for hydrogen peroxide. Anal Chem 63:1580–1585CrossRefGoogle Scholar
  100. 100.
    Patolsky F, Gabriel T, Willner I (1999) Controlled electrocatalysis by microperoxidase-11 and Au-nanoparticle superstructures on conductive supports. J Electroanal Chem 479:69–73CrossRefGoogle Scholar
  101. 101.
    Renault C, Haris KD, Brett MJ, Balland V, Limoges B (2011) Time-resolved UV–visible spectroelectrochemistry using 3D-transparent mesoporous nanocrystalline ITO electrodes. Chem Commun 47:1863–1865CrossRefGoogle Scholar
  102. 102.
    Wan J, Ding J, Wang M (2010) Preparation of gold nanotube by direct electrodeposition for biosensors. J Clust Sci 21:669–677CrossRefGoogle Scholar
  103. 103.
    Wang M, Shen Y, Liu Y, Wang T, Zhao F, Liu F, Dong S (2005) Direct electrochemistry of microperoxidase 11 using carbon nanotube modified electrodes. J Electroanal Chem 578:121–127CrossRefGoogle Scholar
  104. 104.
    Mazzei F, Favero G, Frasconi M, Tata A, Pepi F (2009) Electron-transfer kinetics of microperoxidase-11 covalently immobilised onto the surface of multi-walled carbon nanotubes by reactive landing of mass-selected ions. Chem Eur J 15:7359–7367CrossRefGoogle Scholar
  105. 105.
    Astuti Y, Topoglidis E, Gilardi G, Durrant JR (2004) Cyclic voltammetry and voltabsorptometry studies of redox proteins immobilised on nanocrystalline tin dioxide electrodes. Bioelectrochemistry 63:55–59CrossRefGoogle Scholar
  106. 106.
    Santucci R, Brunori M, Campanella L, Tranchida G (1992) Electrochemical behaviour of horse heart cytochrome c and microperoxidase at a gold electrode chemically modified with sulphur-containing compounds. Bioelectrochem Bioenerg 29:177–184CrossRefGoogle Scholar
  107. 107.
    Lötzbeyer T, Schuhmann W, Schmidt H-L (1996) Electron transfer principles in amperometric biosensors: direct electron transfer between enzymes and electrode surface. Sens Actuators, B 23:50–54CrossRefGoogle Scholar
  108. 108.
    Razumas VJ, Gudavičius AV, Kazlauskaite JD, Kulys JJ (1989) Redox conversions of microperoxidase-11 on a silver electrode. J Electroanal Chem Interfac 271:155–160CrossRefGoogle Scholar
  109. 109.
    Wollenberger U, Drungiliene A, Stöcklein W, Kulys JJ, Scheller FW (1996) Direct electrocatalytic determination of dissolved peroxidases. Anal Chim Acta 329:231–237CrossRefGoogle Scholar
  110. 110.
    Huang W, Zhang Z, Han X, Tang J, Peng Z, Dong S, Wang E (2001) Electrochemistry and spectroscopy study on the interaction of microperoxidase-11 with lipid membrane. Biophys Chem 94:165–173CrossRefGoogle Scholar
  111. 111.
    Qi Z, Li X, Sun D, Li C, Lu T, Ding X, Huang X (2006) Effect of Tris on cacatalytic activity of MP-11. Bioelectrochemistry 68:40–47CrossRefGoogle Scholar
  112. 112.
    Lötzbeyer T, Schuhmann W, Katz E, Falter J, Schmidt H-L (1994) Direct electron transfer between the covalently immobilised enzyme microperoxidase MP-11 and a cystamine-modified gold electrode. J Electroanal Chem 377:291–294CrossRefGoogle Scholar
  113. 113.
    Jiang L, Glidle A, McNeil JC, Cooper MJ (1997) Characterization of electron transfer reactions of microperoxidase assembled at short-chain thiol-monolayers on gold. Biosens Bioelectron 12:1143–1155CrossRefGoogle Scholar
  114. 114.
    Gooding JJ, Erokhin P, Losic D, Yang W, Policarpio V, Liu J, Ho FM, Situmorang M, Hibbert DB, Shapter JG (2001) Parameters important in fabricating enzyme electrodes using self-assembled monolayers of alkanethiols. Anal Sci 17:3–9CrossRefGoogle Scholar
  115. 115.
    Liu Y, Wang M, Zhao F, Guo Z, Chen H, Dong S (2005) Direct electron transfer and electrocatalysis of microperoxidase immobilised on nanohybrid film. J Electroanal Chem 581:1–10CrossRefGoogle Scholar
  116. 116.
    Yarman A, Nagel T, Gajovic-Eichelmann N, Fischer A, Wollenberger U, Scheller FW (2011) Bioelectrocatalysis by microperoxidase-11 in a multilayer architecture of chitosan embedded gold nanoparticles. Electroanalysis 23:611–618Google Scholar
  117. 117.
    Narvaez A, Dominguez E, Katakis I, Katz E, Ranjit KT, Ben-Dov I, Willner I (1997) Microperoxidase-11-mediated reduction of hemoproteins: electrocatalysed reduction of cytochrome c, myoglobin and hemoglobin and electrocatalytic reduction of nitrate in the presence of cytochrome-dependent nitrate reductase. J Electroanal Chem 430:227–233CrossRefGoogle Scholar
  118. 118.
    Katz E, Heleg-Shabtai V, Bardea A, Willner I, Rau HK, Haehnel W (1998) Fully integrated biocatalytic electrodes based on bioaffinity interactions. Biosens Bioelectron 13:741–756CrossRefGoogle Scholar
  119. 119.
    Mabrouk PA (1995) First direct interfacial electron transfer between a biomolecule and a solid electrode in non-aqueous media: direct electrochemistry of microperoxidase-11 at glassy carbon in dimethyl sulfoxide solution. Anal Chim Acta 307:245–251CrossRefGoogle Scholar
  120. 120.
    Moore ANJ, Katz E, Willner I (1996) Electrocatalytic reduction of organic peroxides in organic solvents by microperoxidase-11 immobilised as a monolayer on a gold electrode. J Electroanal Chem 417:189–192CrossRefGoogle Scholar
  121. 121.
    Katz E, Filanovsky B, Willner I (1999) A biofuel cell based on two immiscible solvents and glucose oxidase and microperoxidase-11 monolayer-functionalized electrodes. New J Chem 23:481–487CrossRefGoogle Scholar
  122. 122.
    Ramanavicius A, Kausaite A, Ramanaviciene A (2008) Enzymatic biofuelcell based on anode and cathode powered by ethanol. Biosens Bioelectron 24:761–766CrossRefGoogle Scholar
  123. 123.
    Katz E, Willner I (1996) Amperometric amplification of antigen–antibody association at monolayer interfacess: design of immunosensor. J Electroanal Chem 418:67–72CrossRefGoogle Scholar
  124. 124.
    Abdelwahab AA, Koh WCA, Noh H-B, Shim Y-B (2010) A selective nitric oxide nanocomposite biosensor based on direct electron transfer of microperoxidase: removal of interferences by co-immobilised enzymes. Biosens Bioelectron 91:35–45Google Scholar
  125. 125.
    Wollenberger U, Lisdat F, Rose A, Streffer K (2008) In: Bartlett P (ed) Bioelectrochemistry: fundamentals, experimental techniques and applications. Wiley, New York, pp 219–248Google Scholar
  126. 126.
    Wollenberger U, Neumann B (1997) Quinoprotein glucose dehydrogenase modified carbon paste electrode for the detection of phenolic compounds. Electroanalysis 9:366–371CrossRefGoogle Scholar
  127. 127.
    Mie Y, Kowata K, Hirano Y, Niwa O, Mizutani F (2008) Comparison of enzymatic recycling electrodes for measuring aminophenol: development of a highly sensitive natriuretic peptide assay system. Anal Sci 24:577–582CrossRefGoogle Scholar
  128. 128.
    Solná R, Skládal P (2005) Amperometric flow-injection determination of phenolic compounds using a biosensor with immobilised laccase, peroxidase and tyrosinase. Electroanalysis 17:2137–2146CrossRefGoogle Scholar
  129. 129.
    Haghighi B, Gorton L, Ruzgas T, Jönsson LJ (2003) Characterization of graphite electrodes modified with laccase from Trametes versicolor and their use for bioelectrochemical monitoring of phenolic compounds in flow injection analysis. Anal Chim Acta 487:3–14CrossRefGoogle Scholar
  130. 130.
    Munteanu FD, Lindgren A, Emnéus J, Gorton L, Ruzgas T, Csöregi E, Ciucu A, Van Huystee RB, Gazaryan IG, Lagrimini LM (1998) Bioelectrochemical monitoring of phenols and aromatic amines in flow injection using novel plant peroxidases. Anal Chem 70:2596–2600CrossRefGoogle Scholar
  131. 131.
    Scheller F, Schubert F (1992) In: Techniques and instrumentation in analytical chemistry: biosensors, vol 11. Elsevier, Amsterdam, pp 53–56Google Scholar
  132. 132.
    O’Donoghue D, Magner E (2007) The electrochemical response of microperoxidase in non-aqueous solvents. Electrochim Acta 53:1134–1139CrossRefGoogle Scholar
  133. 133.
    Sartori LR, Santos WR, Kubota LT, Segatelli MG, Tarley CRT (2010) Flow-based method for epinephrine determination using a solid reactor based on molecularly imprinted poly(FePP–MAA–EGDMA). Mater Sci Eng C 31:114–119CrossRefGoogle Scholar
  134. 134.
    Kazlauskaite J, Westlake ACG, Wong L-L, Hill HAO (1996) Direct electrochemistry of cytochrome P40cam. Chem Commun 1996:2189–2190CrossRefGoogle Scholar
  135. 135.
    Fantuzzi A, Fairhead M, Gilardi G (2004) Direct electrochemistry of immobilised human cytochrome CYP2E1. J Am Chem Soc 126:5040–5041CrossRefGoogle Scholar
  136. 136.
    Iwuoha EI, Joseph S, Zhang Z, Smyth MR, Fuhr U, Ortiz de Montellano PR (1998) Drug metabolism biosensors: electrochemical reactivities of cytochrome CYP101 immobilised in synthetic vesicular systems. J Pharm Biom Anal 17:1101–1110CrossRefGoogle Scholar
  137. 137.
    Zhang Z, Nassar A-EF, Lu Z, Schenkman JB, Rusling JF (1997) Direct electron injection from electrodes to cytochrome CYP101 in biomembrane-like films. J Chem Soc Faraday Trans 93:1769–1774CrossRefGoogle Scholar
  138. 138.
    Iwuoha EI, Wilson A, Howel M, Mathebe NGR, Montane-Jaime K, Narinesingh D, Gueseppi-Elie A (2004) Cytochrome P-4502D6 (CYP2D6) bioelectrode for fluoxetine. Anal Lett 37:929–941CrossRefGoogle Scholar
  139. 139.
    Matsumura H, Wiwatchaiwong S, Nakamura N, Yohda M, Ohno H (2006) A novel method for direct electrochemistry of a thermoacidophilic cytochrome P450. Electrochem Commun 8:1245–1249CrossRefGoogle Scholar
  140. 140.
    Matsumura H, Nakamura N, Yohda M, Ohno H (2007) The electrochemical properties of thermophilic cytochrome. P450 CYP119A2 at extremely high temperatures in poly(ethylene oxide). Electrochem Commun 9:361–364CrossRefGoogle Scholar
  141. 141.
    Shumyantseva VV, Bulko TV, Rudakov YO, Kuznetsova GP, Samenkova NF, Lisitsa AV, Karuzina IT, Archakov AI (2007) Electrochemical properties of cytochroms P450 using nanostructured electrodes: direct electron transfer and electro catalysis. J Inorg Biochem 101:859–865CrossRefGoogle Scholar
  142. 142.
    Shumyantseva VV, Bulko TV, Kumetsova GP, Lisitsa AV, Ponomarenko EA, Karuzina II, Archakov AI (2007) Electrochemical reduction of sterol-14 alpha-demethylase from Mycobacterium tuberculosis (CYP51b1). Biochem Mosc 72:658–663CrossRefGoogle Scholar
  143. 143.
    Liu SQ, Peng L, Yang XD, Wu YF, He L (2008) Electrochemistry of cytochrome P450 enzyme on nanoparticle-containing membrane-coated electrode and its applications for drug sensing. Anal Biochem 375:209–216CrossRefGoogle Scholar
  144. 144.
    Peng L, Yang X, Zhang Q, Liu S (2008) Electrochemistry of cytochrome P4502B6 on electrodes modified with zirconium dioxide nanoparticles and platin components. Electroanalysis 20:803–807CrossRefGoogle Scholar
  145. 145.
    Yang ML, Kabulski JL, Wollenberg L, Chen XQ, Subramanian M, Tracy TS, Lederman D, Gannett PM, Wu N (2009) Electrocatalytic drug metabolism by CYP2C9 bonded to a self-assembled monolayer-modified electrode. Drug Metab Dispos 37:892–899CrossRefGoogle Scholar
  146. 146.
    Rhieu SY, Ludwig DR, Siu VS, Palmore GTR (2009) Direct electrochemistry of cytochrome P450 27B1 in surfactant films. Electrochem Commun 11:1857–1860CrossRefGoogle Scholar
  147. 147.
    Mie Y, Ikegami M, Komatsu Y (2010) Gold sputtered electrode surfaces enhance direct electron transfer reactions of human cytochrome P450s. Electrochem Commun 12:680–683CrossRefGoogle Scholar
  148. 148.
    Mak LH, Sadeghi SJ, Fantuzzi A, Gilardi G (2010) Control of human cytochrome P450 2E1 electrocatalytic response as a result of unique orientation on gold electrodes. Anal Chem 82:5357–5362CrossRefGoogle Scholar
  149. 149.
    Fantuzzi A, Capria E, Mak LH, Dodhia VR, Sadeghi SJ, Collins S, Somers G, Hug E, Gilardi G (2010) An electrochemical microfluidic platform for human P450 drug metabolism profiling. Anal Chem 82:10222–10227CrossRefGoogle Scholar
  150. 150.
    Lvov YM, Lu Z, Schenkman JB, Zu X, Rusling JF (1998) Direct electrochemistry of myoglobin and cytochrome CYP101 in alternate layer-by-layer films with DNA and other polyions. J Am Chem Soc 120:4073–4080CrossRefGoogle Scholar
  151. 151.
    Munge B, Estavillo C, Schenkman JB, Rusling JF (2003) Optimization of electrochemical and peroxide-driven oxidation of styrene with ultrathin polyion films containing cytochrome CYP101 and myoglobin. Chem Biol Biological Chem 4:82–89Google Scholar
  152. 152.
    Rusling JF, Zhou L, Munge B, Yang J, Estavillo C, Schenkmann JB (2000) Applications of polyion filmss containing biomolecules to sensing toxicity. Faraday Discuss 116:1–11CrossRefGoogle Scholar
  153. 153.
    Zu X, Lu Z, Zhang Z, Schenkman JB, Rusling JF (1999) Electroenzyme-catalysed oxidation of styrene and cis-β-methylstyrene using thin films of cytochrome CYP101 and myoglobin. Langmuir 15:7372–7377CrossRefGoogle Scholar
  154. 154.
    Joseph S, Rusling JF, Lvov YM, Fredberg T, Fuhr U (2003) An amperometric biosensor with human CYP3A4 as a novel drug screening tool. Biochem Pharmacol 65:1817–1826Google Scholar
  155. 155.
    Reipa V, Mayhew MP, Holden MJ, Vilker VL (2002) Redox control of the CYP101 catalytic cycle: effects of Y96F active site mutations and binding of a non-natural substrate. Chem Commun 4:318–319Google Scholar
  156. 156.
    Faulkner KM, Shet MS, Fisher CW, Eastbrook RW (1995) Electrocatalytically driven w-hydroxylation of fatty acids using cytochrome CYP 4A1. Proc Nat Acad Science USA 92:7705–7709CrossRefGoogle Scholar
  157. 157.
    Shumyantseva VV, Bulko TV, Usanov SA, Schmid RD, Nicolini C, Archakov AI (2001) Construction and characterization of bioelectrocatalytic sensors based on cytochromes P450. J Inorg Biochem 87:185–190CrossRefGoogle Scholar
  158. 158.
    Nazor J, Dannenmann S, Adjei RO, Fordjour YB, Ghampson IT, Blanusa M, Roccatano D, Schwaneberg U (2008) Laboratory evolution of P450BM3 for mediated electron transfer yielding an activity-improved and reductase independent variant. Protein Eng Des Sel 21:29–35CrossRefGoogle Scholar
  159. 159.
    Nouri-Nigjeh E, Permentier HP, Bischoff R, Bruins AP (2010) Lidocaine oxidation by electrogenerated reactive oxygen species in the light of oxidative drug metabolism. Anal Chem 82:7625–7633CrossRefGoogle Scholar
  160. 160.
    Reipa V, Mayhew MP, Vilker VL (1997) A direct electrode-driven CYP cycle for biocatalysis. Proc Nat Acad Science USA 94:13554–13558CrossRefGoogle Scholar
  161. 161.
    Mayhew MP, Reipa V, Holden MJ, Vilker VL (2000) Improving the cytochrome CYP enzyme for electrode-driven biocatalysis of styrene epoxidation. Biotech Prog 16:610–616CrossRefGoogle Scholar
  162. 162.
    Dodhia VR, Sassone C, Fantuzzi A, Di Nardo G, Sadeghi SJ, Gilardi G (2008) Modulating the coupling efficiency of human cytochrome P450 CYP3A4 at electrode surfaces through protein engineering. Electro Chem 10:1744–1747CrossRefGoogle Scholar
  163. 163.
    Krishnan S, Wasalathanthri D, Zhao LL, Schenkman JB, Rusling JF (2011) Efficient bioelectronic actuation of the natural catalytic pathway of human metabolic cytochrome P450s. JACS 133:1459–1465CrossRefGoogle Scholar
  164. 164.
    Panicco P, Dodhia VR, Fantuzzi A, Gilardi G (2011) Enzyme-based amperometric platform to determine the polymorphic response in drug metabolism by cytochromes P450. Anal Chem 83:2179–2186CrossRefGoogle Scholar
  165. 165.
    Makings LR, Zlokarnik G (2000) Aurora Biosciences Corporation, San Diego, CA, USAGoogle Scholar
  166. 166.
    Hara M, Yasuda Y, Toyotama H, Ohkawa H, Nozawa T, Miyake J (2002) A novel isfet-type biosensor based on P-450 monooxygenases. Biosens Bioelectron 17:173–179CrossRefGoogle Scholar
  167. 167.
    Zhou Y, Liu S, Jiang H-J, Yang H, Chen HY (2010) Direct electrochemistry and bioelectrocatalysis of microperoxidase-11 immobilised on chitosan–graphene nanocomposite. Electroanalysis 22:1323–1328CrossRefGoogle Scholar
  168. 168.
    Liu Y, Offenhäuser A, Meyer D (2010) Electrochemical current rectification at bio-functionalized electrodes. Bioelectrochemistry 77:89–93CrossRefGoogle Scholar
  169. 169.
    Zhu X, Yuri I, Gan X, Suzuki I, Li G (2007) Electrochemical study of the effect of nano-zinc oxide on microperoxidase and its application to more sensitive hydrogen peroxide biosensor preparation. Biosens Bioelectron 22:1600–1604CrossRefGoogle Scholar
  170. 170.
    Razumas V, Kazlauskaitė J, Vidžiūnaitė R (1996) Electrocatalytic reduction of hydrogen peroxide on the microperoxidase-11 modified carbon paste and graphite electrodes. Bioelectrochem Bioenerg 39:139–143CrossRefGoogle Scholar
  171. 171.
    Youssoufi-Korri H, Desbenoit N, Ricoux R, Mahy JP, Lecomte S (2008) Eleboration of a new hydrogen peroxide biosensor using microperoxidase 8 (MP8) immobilised on a polypyyrole coated electrode. Mat Sci Eng C 28:855–860CrossRefGoogle Scholar
  172. 172.
    Huang W, Jia J, Zhang Z, Han X, Tang J, Wang J, Dong S, Wang E (2003) Hydrogen peroxide biosensor based on microperoxidase-11 entrapped in lipid membrane. Biosens Bioelectron 18:1225–1230CrossRefGoogle Scholar
  173. 173.
    Cipriano TC, Takahashi PM, de Lima D, Oliveira VX, Souza JA, Martinho H, Alves WA (2010) Spatial organization of peptide nanotubes for electrochemical devices. J Mater Sci 45:5101–5108CrossRefGoogle Scholar
  174. 174.
    Csöregi E, Jönsson-Petterson G, Gorton L (1993) Mediatorless electrocatalytic reduction of hydrogen peroxide at graphite electrodes chemically modified with peroxidases. J Biotechnol 30:315–337CrossRefGoogle Scholar
  175. 175.
    Scheller FW, Schubert F, Renneberg R, Jänchen M, Weise H (1985) Bioesensors: trends and commercialization. Biosensors 1:135–160CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Aysu Yarman
    • 1
  • Lei Peng
    • 2
  • Yunhua Wu
    • 2
  • Amay Bandodkar
    • 1
  • Nenad Gajovic-Eichelmann
    • 1
  • Ulla Wollenberger
    • 2
  • Martin Hofrichter
    • 3
  • René Ullrich
    • 3
  • Katrin Scheibner
    • 4
  • Frieder W. Scheller
    • 1
    • 2
  1. 1.Fraunhofer Institute for Biomedical Engineering IBMTPotsdamGermany
  2. 2.Institute of Biochemistry and BiologyUniversity of PotsdamPotsdamGermany
  3. 3.Unit of Environmental BiotechnologyInternational Graduate School of ZittauZittauGermany
  4. 4.Department of BiotechnologyLausitz University of Applied SciencesSenftenbergGermany

Personalised recommendations