Bioanalytical Reviews

, Volume 2, Issue 1–4, pp 61–101 | Cite as

Luminescent magnetic particles: structures, syntheses, multimodal imaging, and analytical applications

Article

Abstract

Luminescent magnetic particles (LuMaPs) are attractive tools for life science applications such as multimodal imaging, analyte monitoring, nanotherapeutics, and combinations thereof. LuMaPs consist of at least one magnetic and one luminescent component which often are incorporated in a (polymeric) matrix. Alarge variety of materials do exist for the components that make up LuMaPs. However, a smart selection and combination is required for achieving useful tools. While the magnetic component mainly influences the response to a magnetic field, the luminophore can act as label, sensor, or therapeutic agent. The matrix fulfills tasks such as stabilizing the luminophore and magnet, carrying useful functional groups on its surface, or hosting smart drug delivery systems. Surface modifications with targeting ligands can further improve the applicability of LuMaPs, for example in biomedicine. This review provides an overview on LuMaPs with respect to the materials used and to its structures. Routes toward LuMaPs are outlined, and potential applications are discussed.

References

  1. 1.
    Laurent S, Forge D, Port M, Roch A, Robic C, Elst LV, Muller RN (2008) Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. Chem Rev 108(6):2064–2110CrossRefGoogle Scholar
  2. 2.
    Koehler FM, Rossier M, Waelle M, Athanassiou EK, Limbach LK, Grass RN, Günther D, Stark WJ (2009) Magnetic EDTA: coupling heavy metal chelators to metal nanomagnets for rapid removal of cadmium, lead and copper from contaminated water. Chem Commun (32):4862–4864Google Scholar
  3. 3.
    Fang C, Zhang M (2009) Multifunctional magnetic nanoparticles for medical imaging applications. J Mater Chem 19(35):6258–6266CrossRefGoogle Scholar
  4. 4.
    Suh WH, Suh Y, Stucky GD (2009) Multifunctional nanosystems at the interface of physical and life sciences. Nano Today 4(1):27–36CrossRefGoogle Scholar
  5. 5.
    Quarta A, Corato RD, Manna L, Ragusa A, Pellegrino T (2007) Fluorescent-magnetic hybrid nanostructures: preparation, properties, and applications in biology. IEEE Trans Nanobiosci 6(4):298–308CrossRefGoogle Scholar
  6. 6.
    Kircher MF, Mahmood U, King RS, Weissleder R, Josephson L (2003) A multimodal nanoparticle for preoperative magnetic resonance imaging and intraoperative optical brain tumor delineation. Cancer Res 63(23):8122–8125Google Scholar
  7. 7.
    Pankhurst Q, Connolly J, Jones S, Dobson J (2003) Applications of magnetic nanoparticles in biomedicine. J Phys D Appl Phys 36(13):R167–R181CrossRefGoogle Scholar
  8. 8.
    Chen ZL, Sun Y, Huang P, Yang XX, Zhou XP (2009) Studies on preparation of photosensitizer loaded magnetic silica nanoparticles and their anti-tumor effects for targeting photodynamic therapy Nanoscale Res Lett 4(5):400–408CrossRefGoogle Scholar
  9. 9.
    Kumar A, Jena PK, Behera S, Lockey RF, Mohapatra S, Mohapatra S (2010) Multifunctional magnetic nanoparticles for targeted delivery. Nanomedicine 6(1):64–69Google Scholar
  10. 10.
    Anker JN, Koo YE, Kopelman R (2007) Magnetically controlled sensor swarms. Sens Actuators B 121(1):83–92CrossRefGoogle Scholar
  11. 11.
    Chojnacki P, Mistlberger G, Klimant I (2007) Separable magnetic sensors for the optical determination of oxygen. Angew Chem Int Ed 46(46):8850–8853CrossRefGoogle Scholar
  12. 12.
    Kreft O, Javier AM, Sukhorukov GB, Parak WJ (2007) Polymer microcapsules as mobile local pH-sensors. J Mater Chem 17(42):4471–4476CrossRefGoogle Scholar
  13. 13.
    Baharvand H (2008) Preparation and characterization of fluorescent polymer magnetic particles. J Appl Polym Sci 109(3):1823–1828CrossRefGoogle Scholar
  14. 14.
    Guo J, Wang C, Mao W, Yang W, Liu C, Chen J (2008) Facile one-pot preparation and functionalization of luminescent chitosan–poly(methacrylic acid) microspheres based on polymer–monomer pairs. Nanotechnology 19(31):315605CrossRefGoogle Scholar
  15. 15.
    Holzapfel V, Lorenz M, Weiss CK, Schrezenmeier H, Landfester K, Mailaender V (2006) Synthesis and biomedical applications of functionalized fluorescent and magnetic dual reporter nanoparticles as obtained in the miniemulsion process. J Phys Condens Matter 18(38, Sp. Iss. SI):S2581–S2594CrossRefGoogle Scholar
  16. 16.
    Kim J, Lee J, Lee J, Yu J, Kim B, An K, Hwang Y, Shin C, Park J, Kim J, Hyeon T (2006) Magnetic fluorescent delivery vehicle using uniform mesoporous silica spheres embedded with monodisperse magnetic and semiconductor nanocrystals. J Am Chem Soc 128(3):688–689CrossRefGoogle Scholar
  17. 17.
    Kim J, Lee JE, Lee SH, Yu JH, Lee JH, Park TG, Hyeon T (2008) Designed fabrication of a multifunctional polymer nanomedical platform for simultaneous cancer-targeted imaging and magnetically guided drug delivery. Adv Mater 20(3):478–483CrossRefGoogle Scholar
  18. 18.
    Kim HJ, Shin KJ, Han MK, An K, Lee JK, Honma I, Kim H (2009) One-pot synthesis of multifunctional mesoporous silica nanoparticle incorporated with zinc(II) phthalocyanine and iron oxide. Scr Mater 61(12):1137–1140CrossRefGoogle Scholar
  19. 19.
    Kopelman R, Lee Koo YE, Philbert M, Moffat BA, Ramachandra Reddy G, McConville P, Hall DE, Chenevert TL, Bhojani MS, Buck SM, Rehemtulla A, Ross BD (2005) Multifunctional nanoparticle platforms for in vivo MRI enhancement and photodynamic therapy of a rat brain cancer. J Magn Magn Mater 293(1):404–410CrossRefGoogle Scholar
  20. 20.
    Li L, Chen D, Zhang Y, Deng Z, Ren X, Meng X, Tang F, Ren J, Zhang L (2007) Magnetic and fluorescent multifunctional chitosan nanoparticles as a smart drug delivery system. Nanotechnology 18(40):405102CrossRefGoogle Scholar
  21. 21.
    Li X, Wang L, Zhou C, Guan T, Li J, Zhang Y (2007) Preliminary studies of application of CdTe nanocrystals and dextran-Fe3O4 magnetic nanoparticles in sandwich immunoassay. Clin Chim Acta 378(1–2):168–174CrossRefGoogle Scholar
  22. 22.
    Li L, Tsung CK, Ming T, Sun Z, Ni W, Shi Q, Stucky GD, Wang J (2008) Multifunctional mesostructured silica microspheres from an ultrasonic aerosol spray. Adv Funct Mater 18(19):2956–2962CrossRefGoogle Scholar
  23. 23.
    Liu J, Zhang Y, Yang T, Ge Y, Zhang S, Chen Z, Gu N (2009) Synthesis, characterization, and application of composite alginate microspheres with magnetic and fluorescent functionalities. J Appl Polym Sci 113(6):4042–4051CrossRefGoogle Scholar
  24. 24.
    Mistlberger G, Chojnacki P, Klimant I (2008) Magnetic sensor particles: an optimized magnetic separator with an optical window. J Phys D Appl Phys 41(8):085003 (9pp)CrossRefGoogle Scholar
  25. 25.
    Mistlberger G, Borisov SM, Klimant I (2009) Enhancing performance in optical sensing with magnetic nanoparticles. Sens Actuators B 139(1):174–180CrossRefGoogle Scholar
  26. 26.
    Mistlberger G, Koren K, Scheucher E, Aigner D, Borisov SM, Zankel A, Pölt P, Klimant I (2010) Multi-functional magnetic optical sensor particles with tunable sizes for monitoring metabolic parameters and as basis for nanotherapeutics. Adv Funct Mater 20(11):1842–1851CrossRefGoogle Scholar
  27. 27.
    Mulvaney S, Mattoussi H, Whitman L (2004) Incorporating fluorescent dyes and quantum dots into magnetic microbeads for immunoassays. BioTechniques 36(4):602–609Google Scholar
  28. 28.
    Ozawa K, Ishii K (2009) Photophysical and magnetic properties of magnetic silica gel-supported silicon phthalocyanine complexes. Phys Chem Chem Phys 11(7):1019–1022CrossRefGoogle Scholar
  29. 29.
    Sathe T, Agrawal A, Nie S (2006) Mesoporous silica beads embedded with semiconductor quantum dots and iron oxide nanocrystals: dual-function microcarriers for optical encoding and magnetic separation. Anal Chem 78(16):5627–5632CrossRefGoogle Scholar
  30. 30.
    Smith JE, Medley CD, Tang Z, Shangguan D, Lofton C, Tan W (2007) Aptamer-conjugated nanoparticles for the collection and detection of multiple cancer cells. Anal Chem 79(8):3075–3082CrossRefGoogle Scholar
  31. 31.
    Tan W, Zhang Y (2005) Multifunctional quantum-dot-based magnetic chitosan nanobeads. Adv Mater 17(19):2375–2380CrossRefGoogle Scholar
  32. 32.
    Tu C, Yang Y, Gao M (2008) Preparations of bifunctional polymeric beads simultaneously incorporated with fluorescent quantum dots and magnetic nanocrystals. Nanotechnology 19(10):105601CrossRefGoogle Scholar
  33. 33.
    Wang G, Song E, Xie H, Zhang Z, Tian Z, Zuo C, Pang D, Wu D, Shi Y (2005) Biofunctionalization of fluorescent-magnetic-bifunctional nanospheres and their applications. Chem Commun (34):4276–4278Google Scholar
  34. 34.
    Wang L, Sun J (2008) Poly(allylamine hydrochloride)–dextran microgels functionalized with magnetic and luminescent nanoparticles. J Mater Chem 18(34):4042–4049CrossRefGoogle Scholar
  35. 35.
    Wang G, Wang C, Dou W, Ma Q, Yuan P, Su X (2009) The synthesis of magnetic and fluorescent bi-functional silica composite nanoparticles via reverse microemulsion method. J Fluoresc 19(6):939–946CrossRefGoogle Scholar
  36. 36.
    Wu J, Ye Z, Wang G, Yuan J (2007) Multifunctional nanoparticles possessing magnetic, long-lived fluorescence and bio-affinity properties for time-resolved fluorescence cell imaging. Talanta 72(5):1693–1697CrossRefGoogle Scholar
  37. 37.
    Xie H, Zuo C, Liu Y, Zhang Z, Pang D, Li X, Gong J, Dickinson C, Zhou W (2005) Cell-targeting multifunctional nanospheres with both fluorescence and magnetism. Small 1(5):506–509CrossRefGoogle Scholar
  38. 38.
    Xie M, Hu J, Long YM, Zhang ZL, Xie HY, Pang DW (2009) Lectin-modified trifunctional nanobiosensors for mapping cell surface glycoconjugates. Biosens Bioelectron 24(5, Sp. Iss. SI):1311–1317CrossRefGoogle Scholar
  39. 39.
    Yang CH, Huang KS, Lin YS, Lu K, Tzeng CC, Wang EC, Lin CH, Hsu WY, Chang JY (2009) Microfluidic assisted synthesis of multi-functional polycaprolactone microcapsules: incorporation of CdTe quantum dots, Fe3O4 superparamagnetic nanoparticles and tamoxifen anticancer drugs. Lab Chip 9(7):961–965CrossRefGoogle Scholar
  40. 40.
    Zhang P, Dou H, Li W, Tao K, Xing B, Sun K (2007) Fabrication of fluorescent and magnetic multifunctional polystyrene microbeads with carboxyl ends. Chem Lett 36(12):1458–1459CrossRefGoogle Scholar
  41. 41.
    Zhang B, Cheng J, Gong X, Dong X, Liu X, Ma G, Chang J (2008) Facile fabrication of multi-colors high fluorescent/superparamagnetic nanoparticles. J Colloid Interface Sci 322(2):485–490CrossRefGoogle Scholar
  42. 42.
    Yan H, Zhang JC, Yu BW, Shen Y (2010) Preparation and formation mechanism of nanocomposites with fluorescent and magnetic properties. Acta Mater 58(2):726–733CrossRefGoogle Scholar
  43. 43.
    Thakur D, Deng S, Baldet T, Winter JO (2009) pH sensitive CdS–iron oxide fluorescent-magnetic nanocomposites. Nanotechnology 20(48):485601CrossRefGoogle Scholar
  44. 44.
    Anker JN, Kopelman R (2003) Magnetically modulated optical nanoprobes. Appl Phys Lett 82(7):1102–1104CrossRefGoogle Scholar
  45. 45.
    Anker JN, Behrend CJ, Huang H, Kopelman R (2005) Magnetically-modulated optical nanoprobes (MagMOONs) and systems. J Magn Magn Mater 293(1):655–662CrossRefGoogle Scholar
  46. 46.
    Behrend C, Anker J, McNaughton B, Brasuel M, Philbert M, Kopelman R (2004) Metal-capped Brownian and magnetically modulated optical nanoprobes (MOONs): micromechanics in chemical and biological microenvironments. J Phys Chem B 108(29):10,408–10,414CrossRefGoogle Scholar
  47. 47.
    Roberts TG, Anker JN, Kopelman R (2005) Magnetically modulated optical nanoprobes (MagMOONs) for detection and measurement of biologically important ions against the natural background fluorescence of intracellular environments. J Magn Magn Mater 293(1):715–724CrossRefGoogle Scholar
  48. 48.
    He R, You X, Shao J, Gao F, Pan B, Cui D (2007) Core/shell fluorescent magnetic silica-coated composite nanoparticles for bioconjugation. Nanotechnology 18(31):315601CrossRefGoogle Scholar
  49. 49.
    Levy L, Sahoo Y, Kim K, Bergey EJ, Prasad PN (2002) Nanochemistry: synthesis and characterization of multifunctional nanoclinics for biological applications. Chem Mater 14(9):3715–3721CrossRefGoogle Scholar
  50. 50.
    Lu H, Yi G, Zhao S, Chen D, Guo L, Cheng J (2004) Synthesis and characterization of multi-functional nanoparticles possessing magnetic, up-conversion fluorescence and bio-affinity properties. J Mater Chem 14(8):1336–1341CrossRefGoogle Scholar
  51. 51.
    Qiu G, Xu Y, Zhu B, Oiu G (2005) Novel, fluorescent, magnetic, polysaccharide-based microsphere for orientation, tracing, and anticoagulation: preparation and characterization. Biomacromolecules 6(2):1041–1047CrossRefGoogle Scholar
  52. 52.
    Yi DK, Selvan ST, Lee SS, Papaefthymiou GC, Kundaliya D, Ying JY (2005) Silica-coated nanocomposites of magnetic nanoparticles and quantum dots. J Am Chem Soc 127(14):4990–4991CrossRefGoogle Scholar
  53. 53.
    Ma ZY, Dosev D, Nichkova M, Gee SJ, Hammock BD, Kennedy IM (2009) Synthesis and bio-functionalization of multifunctional magnetic Fe3O4@Y2O3:Eu nanocomposites. J Mater Chem 19(27):4695–4700CrossRefGoogle Scholar
  54. 54.
    Santra S, Yang H, Holloway PH, Stanley JT, Mericle RA (2005) Synthesis of water-dispersible fluorescent, radio-opaque, and paramagnetic CdS:Mn/ZnS quantum dots: a multifunctional probe for bioimaging. J Am Chem Soc 127(6):1656–1657CrossRefGoogle Scholar
  55. 55.
    Selvan ST, Patra P, Ang C, Ying J (2007) Synthesis of silica-coated semiconductor and magnetic quantum dots and their use in the imaging of live cells. Angew Chem Int Ed 46(14):2448–2452CrossRefGoogle Scholar
  56. 56.
    Sahoo Y, Goodarzi A, Swihart M, Ohulchanskyy T, Kaur N, Furlani E, Prasad P (2005) Aqueous ferrofluid of magnetite nanoparticles: fluorescence labeling and magnetophoretic control. J Phys Chem B 109(9):3879–3885CrossRefGoogle Scholar
  57. 57.
    Wang D, He J, Rosenzweig N, Rosenzweig Z (2004) Superparamagnetic Fe2O3 beads-CdSe/ZnS quantum dots core–shell nanocomposite particles for cell separation. Nano Lett 4(3):409–413CrossRefGoogle Scholar
  58. 58.
    Lalatonne Y, Paris C, Serfaty JM, Weinmann P, Lecouvey M, Motte L (2008) Bis-phosphonates—ultra small superparamagnetic iron oxide nanoparticles: a platform towards diagnosis and therapy. Chem Commun (22):2553–2555Google Scholar
  59. 59.
    Veiseh O, Sun C, Gunn J, Kohler N, Gabikian P, Lee D, Bhattarai N, Ellenbogen R, Sze R, Hallahan A, Olson J, Zhang M (2005) Optical and MRI multifunctional nanoprobe for targeting gliomas. Nano Lett 5(6):1003–1008CrossRefGoogle Scholar
  60. 60.
    Kim H, Achermann M, Balet LP, Hollingsworth JA, Klimov VI (2005) Synthesis and characterization of Co/CdSe core/shell nanocomposites: bifunctional magnetic-optical nanocrystals. J Am Chem Soc 127(2):544–546CrossRefGoogle Scholar
  61. 61.
    Dosev D, Nichkova M, Dumas RK, Gee SJ, Hammock BD, Liu K, Kennedy IM (2007) Magnetic/luminescent core/shell particles synthesized by spray pyrolysis and their application in immunoassays with internal standard. Nanotechnology 18(5):055102CrossRefGoogle Scholar
  62. 62.
    Nichkova M, Dosev D, Gee SJ, Hammock BD, Kennedy IM (2007) Multiplexed immunoassays for proteins using magnetic luminescent nanoparticles for internal calibration. Anal Biochem 369(1):34–40CrossRefGoogle Scholar
  63. 63.
    Zhou T, Lu M, Zhang Z, Gong H, Chin WS, Liu B (2010) Synthesis and characterization of multifunctional FePt/ZnO core/shell nanoparticles. Adv Mater 22(3):403CrossRefGoogle Scholar
  64. 64.
    Yang P, Ando M, Murase N (2009) Preparation of SiO2 beads with highly luminescent and magnetic nanocrystals via a modified reverse micelle process. Nouv J Chim 33(7):1457–1461CrossRefGoogle Scholar
  65. 65.
    Zhang M, Shi S, Meng J, Wang X, Fan H, Zhu Y, Wang X, Qian Y (2008) Preparation and characterization of near-infrared luminescent bifunctional core/shell nanocomposites. J Phys Chem C 112(8):2825–2830CrossRefGoogle Scholar
  66. 66.
    Yang P, Quan Z, Hou Z, Li C, Kang X, Cheng Z, Lin J (2009) A magnetic, luminescent and mesoporous core–shell structured composite material as drug carrier. Biomaterials 30(27):4786–4795CrossRefGoogle Scholar
  67. 67.
    Buathong S, Ung D, Daou TJ, Ulhaq-Bouillet C, Pourroy G, Guillon D, Ivanova L, Bernhardt I, Begin-Colin S, Donnio B (2009) Thermal, magnetic, and luminescent properties of dendronized ferrite nanoparticles. J Phys Chem C 113(28):12,201–12,212CrossRefGoogle Scholar
  68. 68.
    Deng Y, Wang C, Shen X, Yang W, Jin L, Gao H, Fu S (2005) Preparation, characterization, and application of multistimuli-responsive microspheres with fluorescence-labeled magnetic cores and thermoresponsive shells. Chem Eur J 11(20):6006–6013CrossRefGoogle Scholar
  69. 69.
    Funovics M, Montet X, Reynolds F, Weissleder R, Josephson L (2005) Nanoparticles for the optical imaging of tumor E-selectin. Neoplasia 7(10):904–911CrossRefGoogle Scholar
  70. 70.
    Stelter L, Pinkernelle JG, Michel R, Schwartlaender R, Raschzok N, Morgul MH, Koch M, Denecke T, Ruf J, Baeumler H, Jordan A, Hamm B, Sauer IM, Teichgraeber U (2010) Modification of aminosilanized superparamagnetic nanoparticles: feasibility of multimodal detection using 3T MRI, small animal PET, and fluorescence imaging. Mol Imaging Biol 12(1):25–34CrossRefGoogle Scholar
  71. 71.
    Taylor KML, Rieter WJ, Lin W (2008) Manganese-based nanoscale metal–organic frameworks for magnetic resonance imaging. J Am Chem Soc 130(44):14,358–14,359CrossRefGoogle Scholar
  72. 72.
    Nitin N, LaConte L, Zurkiya O, Hu X, Bao G (2004) Functionalization and peptide-based delivery of magnetic nanoparticles as an intracellular MRI contrast agent. J Biol Inorg Chem 9(6):706–712CrossRefGoogle Scholar
  73. 73.
    Chu M, Song X, Cheng D, Liu S, Zhu J (2006) Preparation of quantum dot-coated magnetic polystyrene nanospheres for cancer cell labelling and separation. Nanotechnology 17(13):3268–3273CrossRefGoogle Scholar
  74. 74.
    Liu B, Wang D, Huang W, Yu M, Yao A (2008) Fabrication of nanocomposite particles with superparamagnetic and luminescent functionalities. Mater Res Bull 43(11):2904–2911CrossRefGoogle Scholar
  75. 75.
    Sun P, Zhang H, Liu C, Fang J, Wang M, Chen J, Zhang J, Mao C, Xu S (2010) Preparation and characterization of Fe3O4/CdTe magnetic/fluorescent nanocomposites and their applications in immuno-labeling and fluorescent imaging of cancer cells. Langmuir 26(2):1278–1284CrossRefGoogle Scholar
  76. 76.
    Wu S, Lin Y, Hung Y, Chou Y, Hsu Y, Chang C, Mou C (2008) Multifunctional mesoporous silica nanoparticles for intracellular labeling and animal magnetic resonance imaging studies. ChemBioChem 9(1):53–57CrossRefGoogle Scholar
  77. 77.
    Yang J, Lee J, Kang J, Chung CH, Lee K, Suh JS, Yoon HG, Huh YM, Haam S (2008) Magnetic sensitivity enhanced novel fluorescent magnetic silica nanoparticles for biomedical applications. Nanotechnology 19(7):075610CrossRefGoogle Scholar
  78. 78.
    Yoon T, Kim J, Kim B, Yu K, Cho M, Lee J (2005) Multifunctional nanoparticles possessing a “magnetic motor effect” for drug or gene delivery. Angew Chem Int Ed 44(7):1068–1071CrossRefGoogle Scholar
  79. 79.
    Zhang Y, Wang SN, Ma S, Guan JJ, Li D, Zhang XD, Zhang ZD (2008) Self-assembly multifunctional nanocomposites with Fe3O4 magnetic core and CdSe/ZnS quantum dots shell. J Biomed Mater Res Part A 85A(3):840–846CrossRefGoogle Scholar
  80. 80.
    Liu B, Xie W, Wang D, Huang W, Yu M, Yao A (2008) Preparation and characterization of magnetic luminescent nanocomposite particles. Mater Lett 62(17–18):3014–3017CrossRefGoogle Scholar
  81. 81.
    Huang X, Zhuang J, Chen D, Liu H, Tang F, Yan X, Meng X, Zhang L, Ren J (2009) General strategy for designing functionalized magnetic microspheres for different bioapplications. Langmuir 25(19):11, 657–11, 663Google Scholar
  82. 82.
    Jang JH, Lim HB (2010) Characterization and analytical application of surface modified magnetic nanoparticles. Microchem J 94(2):148–158CrossRefGoogle Scholar
  83. 83.
    Ma D, Guan J, Dénommée S, Enright G, Veres T, Simard B (2006) Multifunctional nano-architecture for biomedical applications. Chem Mater 18(7):1920–1927CrossRefGoogle Scholar
  84. 84.
    Ren C, Li J, Liu Q, Ren J, Chen X, Hu Z, Xue D (2008) Synthesis of organic dye-impregnated silica shell-coated iron oxide nanoparticles by a new method. Nanoscale Res Lett 3(12):496–501CrossRefGoogle Scholar
  85. 85.
    Wang Q, Liu Y, Lin C, Yan H (2007) Layer-by-layer growth of superparamagnetic, fluorescent barcode nanospheres. Nanotechnology 18(40):405604CrossRefGoogle Scholar
  86. 86.
    Zhang L, Liu B, Dong S (2007) Bifunctional nanostructure of magnetic core luminescent shell and its application as solid-state electrochemiluminescence sensor material. J Phys Chem B 111(35):10, 448–10, 452Google Scholar
  87. 87.
    Liong M, Lu J, Kovochich M, Xia T, Ruehm SG, Nel AE, Tamanoi F, Zink JI (2008) Multifunctional inorganic nanoparticles for imaging, targeting, and drug delivery. ACS NANO 2(5):889–896CrossRefGoogle Scholar
  88. 88.
    Ichiyanagi Y, Moritake S, Taira S, Setou M (2007) Functional magnetic nanoparticles for medical application. J Magn Magn Mater 310(2, Part 3):2877–2879CrossRefGoogle Scholar
  89. 89.
    Abou-Hassan A, Bazzi R, Cabuil V (2009) Multistep continuous-flow microsynthesis of magnetic and fluorescent gamma-Fe2O3@SiO2 core/shell nanoparticles. Angew Chem Int Ed 48(39):7180–7183CrossRefGoogle Scholar
  90. 90.
    Bridot J, Faure A, Laurent S, Rivière C, Billotey C, Hiba B, Janier M, Josserand V, Coll J, Elst LV, Muller R, Roux S, Perriat P, Tillement O (2007) Hybrid gadolinium oxide nanoparticles: multimodal contrast agents for in vivo imaging. J Am Chem Soc 129(16):5076–5084CrossRefGoogle Scholar
  91. 91.
    Bridot JL, Dayde D, Riviere C, Mandon C, Billotey C, Lerondel S, Sabattier R, Cartron G, Le Pape A, Blondiaux G, Janier M, Perriat P, Roux S, Tillement O (2009) Hybrid gadolinium oxide nanoparticles combining imaging and therapy. J Mater Chem 19(16):2328–2335CrossRefGoogle Scholar
  92. 92.
    Ergeneman O, Dogangil G, Kummer M, Abbott J, Nazeeruddin M, Nelson B (2008) A magnetically controlled wireless optical oxygen sensor for intraocular measurements. IEEE Sens J 8(1):29–37CrossRefGoogle Scholar
  93. 93.
    Mistlberger G, Koren K, Borisov SM, Klimant I (2010) Magnetically remote-controlled optical sensor spheres for monitoring oxygen or pH. Anal Chem 82(5):2124–2128CrossRefGoogle Scholar
  94. 94.
    Faure AC, Dufort S, Josserand V, Perriat P, Coll JL, Roux S, Tillement O (2009) Control of the in vivo biodistribution of hybrid nanoparticles with different poly(ethylene glycol) coatings. Small 5(22):2565–2575CrossRefGoogle Scholar
  95. 95.
    Ge Y, Zhang Y, He S, Nie F, Teng G, Gu N (2009) Fluorescence modified chitosan-coated magnetic nanoparticles for high-efficient cellular imaging. Nanoscale Res Lett 4(4):287–295CrossRefGoogle Scholar
  96. 96.
    Heitsch AT, Smith DK, Patel RN, Ress D, Korgel BA (2008) Multifunctional particles: magnetic nanocrystals and gold nanorods coated with fluorescent dye-doped silica shells. J Solid State Chem 181(7):1590–1599CrossRefGoogle Scholar
  97. 97.
    Lai CW, Wang YH, Lai CH, Yang MJ, Chen CY, Chou PT, Chan CS, Chi Y, Chen YC, Hsiao JK (2008) Iridium-complex-functionalized Fe3O4/SiO2 core/shell nanoparticles: a facile three-in-one system in magnetic resonance imaging, luminescence imaging, and photodynamic therapy. Small 4(2):218–224CrossRefGoogle Scholar
  98. 98.
    Liu Z, Yi G, Zhang H, Ding J, Zhang Y, Xue J (2008) Monodisperse silica nanoparticles encapsulating upconversion fluorescent and superparamagnetic nanocrystals. Chem Commun (6):694–696Google Scholar
  99. 99.
    Lu Y, Yin Y, Mayers B, Xia Y (2002) Modifying the surface properties of superparamagnetic iron oxide nanoparticles through a sol–gel approach. Nano Lett 2(3):183–186CrossRefGoogle Scholar
  100. 100.
    Lu C, Hung Y, Hsiao J, Yao M, Chung T, Lin Y, Wu S, Hsu S, Liu H, Mou C, Yang C, Huang D, Chen Y (2007) Bifunctional magnetic silica nanoparticles for highly efficient human stem cell labeling. Nano Lett 7(1):149–154CrossRefGoogle Scholar
  101. 101.
    Yeo KM, Gao CJ, Ahn KH, Lee IS (2008) Superparamagnetic iron oxide nanoparticles with photoswitchable fluorescence. Chem Commun (38):4622–4624Google Scholar
  102. 102.
    Yoon T, Yu K, Kim E, Kim J, Kim B, Yun S, Sohn B, Cho M, Lee J, Park S (2006) Specific targeting, cell sorting, and bioimaging with smart magnetic silica core–shell nanomaterials. Small 2(2):209–215CrossRefGoogle Scholar
  103. 103.
    Kim J, Kim HS, Lee N, Kim T, Kim H, Yu T, Song IC, Moon WK, Hyeon T (2008) Multifunctional uniform nanoparticles composed of a magnetite nanocrystal core and a mesoporous silica shell for magnetic resonance and fluorescence imaging and for drug delivery. Angew Chem Int Ed 47(44):8438–8441CrossRefGoogle Scholar
  104. 104.
    Kim J, Lee JE, Lee J, Jang Y, Kim SW, an KA, Yu HH, Hyeon T (2006) Generalized fabrication of multifunctional nanoparticle assemblies on silica spheres. Angew Chem Int Ed 45(29):4789–4793CrossRefGoogle Scholar
  105. 105.
    Insin N, Tracy JB, Lee H, Zimmer JP, Westervelt RM, Bawendi MG (2008) Incorporation of iron oxide nanoparticles and quantum dots into silica microspheres. ACS NANO 2(2):197–202CrossRefGoogle Scholar
  106. 106.
    Maeda Y, Yoshino T, Matsunaga T (2009) Novel nanocomposites consisting of in vivo-biotinylated bacterial magnetic particles and quantum dots for magnetic separation and fluorescent labeling of cancer cells. J Mater Chem 19(35):6361–6366CrossRefGoogle Scholar
  107. 107.
    Fernandez B, Galvez N, Cuesta R, Hungria AB, Calvino JJ, Dominguez-Vera JM (2008) Quantum dots decorated with magnetic bionanoparticles. Adv Funct Mater 18(24):3931–3935CrossRefGoogle Scholar
  108. 108.
    Gao J, Zhang W, Huang P, Zhang B, Zhang X, Xu B (2008) Intracellular spatial control of fluorescent magnetic nanoparticles. J Am Chem Soc 130(12):3710–3711CrossRefGoogle Scholar
  109. 109.
    Gu H, Zheng R, Zhang X, Xu B (2004) Facile one-pot synthesis of bifunctional heterodimers of nanoparticles: a conjugate of quantum dot and magnetic nanoparticles. J Am Chem Soc 126(18):5664–5665CrossRefGoogle Scholar
  110. 110.
    Hu SH, Kuo KT, Tung WL, Liu DM, Chen SY (2009) A multifunctional nanodevice capable of imaging, magnetically controlling, and in situ monitoring drug release. Adv Funct Mater 19(21):3396–3403CrossRefGoogle Scholar
  111. 111.
    Ma D, Jakubek ZJ, Simard B (2006) A new approach towards controlled synthesis of multifunctional core–shell nano-architectures: luminescent and superparamagnetic. J Nanosci Nanotechnol 6(12):3677–3684CrossRefGoogle Scholar
  112. 112.
    Chang Q, Zhu L, Yu C, Tang H (2008) Synthesis and properties of magnetic and luminescent Fe3O4/SiO2/Dye/SiO2 nanoparticles. J Lumin 128(12):1890–1895CrossRefGoogle Scholar
  113. 113.
    Hong X, Li J, Wang M, Xu J, Guo W, Li J, Bai Y, Li T (2004) Fabrication of magnetic luminescent nanocomposites by a layer-by-layer self-assembly approach. Chem Mater 16(21):4022–4027CrossRefGoogle Scholar
  114. 114.
    Liu H, Guo J, Jin L, Yang W, Wang C (2008) Fabrication and functionalization of dendritic poly(amidoamine)-immobilized magnetic polymer composite microspheres. J Phys Chem B 112(11):3315–3321CrossRefGoogle Scholar
  115. 115.
    Guo J, Yang W, Deng Y, Wang C, Fu S (2005) Organic-dye-coupled magnetic nanoparticles encaged inside thermoresponsive PNIPAM microcapsules. Small 1(7):737–743CrossRefGoogle Scholar
  116. 116.
    Gaponik N, Radtchenko I, Sukhorukov G, Rogach A (2004) Luminescent polymer microcapsules addressable by a magnetic field. Langmuir 20(4):1449–1452CrossRefGoogle Scholar
  117. 117.
    Li L, Li H, Chen D, Liu H, Tang F, Zhang Y, Ren J, Li Y (2009) Preparation and characterization of quantum dots coated magnetic hollow spheres for magnetic fluorescent multimodal imaging and drug delivery. J Nanosci Nanotechnol 9(4):2540–2545CrossRefGoogle Scholar
  118. 118.
    Kreft O, Prevot M, Möhwald H, Sukhorukov G (2007) Shell-in-shell microcapsules: a novel tool for integrated, spatially confined enzymatic reactions. Angew Chem Int Ed 46(29):5605–5608CrossRefGoogle Scholar
  119. 119.
    Kim BS, Taton TA (2007) Multicomponent nanoparticles via self-assembly with cross-linked block copolymer surfactants. Langmuir 23(4):2198–2202CrossRefGoogle Scholar
  120. 120.
    Lim YT, Kim JK, Noh YW, Cho MY, Chung BH (2009) Multifunctional silica nanocapsule with a single surface hole. Small 5(3):324–328CrossRefGoogle Scholar
  121. 121.
    Yang S, Liu H, Zhang Z (2009) Design and fabrication of hollow, magnetic and fluorescent CdS–magnetite–poly(styrene-co-methyl methacrylate) microspheres. Nouv J Chim 33(3):620–625CrossRefGoogle Scholar
  122. 122.
    Wang Z, Wu L, Chen M, Zhou S (2009) Facile synthesis of superparamagnetic fluorescent Fe3O4/ZnS hollow nanospheres. J Am Chem Soc 131(32):11,276–11,277Google Scholar
  123. 123.
    Zebli B, Susha AS, Sukhorukov GB, Rogach AL, Parak WJ (2005) Magnetic targeting and cellular uptake of polymer microcapsules simultaneously functionalized with magnetic and luminescent nanocrystals. Langmuir 21(10):4262–4265CrossRefGoogle Scholar
  124. 124.
    Roullier V, Grasset F, Boulmedais F, Artzner F, Cador O, Marchi-Artzner V (2008) Small bioactivated magnetic quantum dot micelles. Chem Mater 20(21):6657–6665CrossRefGoogle Scholar
  125. 125.
    Mandal S, Lequeux N, Rotenberg B, Tramier M, Fattaccioli J, Bibette J, Dubertret B (2005) Encapsulation of magnetic and fluorescent nanoparticles in emulsion droplets. Langmuir 21(9):4175–4179CrossRefGoogle Scholar
  126. 126.
    Vuu K, Xie J, McDonald M, Bernardo M, Hunter F, Zhang Y, Li K, Bednarski M, Guccione S (2005) Gadolinium-rhodamine nanoparticles for cell labeling and tracking via magnetic resonance and optical imaging. Bioconjug Chem 16(4):995–999CrossRefGoogle Scholar
  127. 127.
    Lansalot M, Sabor M, Elaissari A, Pichot C (2005) Elaboration of fluorescent and highly magnetic submicronic polymer particles via a stepwise heterocoagulation process. Colloid Polym Sci 283(12):1267–1277CrossRefGoogle Scholar
  128. 128.
    Jarzyna PA, Skajaa T, Gianella A, Cormode DP, Samber DD, Dickson SD, Chen W, Griffioen AW, Fayad ZA, Mulder WJM (2009) Iron oxide core oil-in-water emulsions as a multifunctional nanoparticle platform for tumor targeting and imaging. Biomaterials 30(36):6947–6954CrossRefGoogle Scholar
  129. 129.
    Lee JH, Jun YW, Yeon SI, Shin JS, Cheon J (2006) Dual-mode nanoparticle probes for high-performance magnetic resonance and fluorescence imaging of neuroblastoma. Angew Chem Int Ed 45(48):8160–8162CrossRefGoogle Scholar
  130. 130.
    Rieter WJ, Kim J, Taylor K, An H, Lin W, Tarrant T, Lin W (2007) Hybrid silica nanoparticles for multimodal imaging. Angew Chem Int Ed 46(20):3680–3682CrossRefGoogle Scholar
  131. 131.
    Koole R, van Schooneveld MM, Hilhorst J, Castermans K, Cormode DP, Strijkers GJ, Donega CdM, Vanmaekelbergh D, Griffioen AW, Nicolay K, Fayad ZA, Meijerink A, Mulder WJM (2008) Paramagnetic lipid-coated silica nanoparticles with a fluorescent quantum dot core: a new contrast agent platform for multimodality imaging. Bioconjug Chem 19(12):2471–2479CrossRefGoogle Scholar
  132. 132.
    Bertorelle F, Wilhelm C, Roger J, Gazeau F, Menager C, Cabuil V (2006) Fluorescence-modified superparamagnetic nanoparticles: intracellular uptake and use in cellular imaging. Langmuir 22(12):5385–5391CrossRefGoogle Scholar
  133. 133.
    LeFort J (1852) Memoire sur les oxydes ferroso-ferriques et leurs combinaisons. C R Acad Sci Paris 34:480Google Scholar
  134. 134.
    Elmore WC (1938) Ferromagnetic colloid for studying magnetic structures. Phys Rev 54(4):309CrossRefGoogle Scholar
  135. 135.
    Massart R (1981) Preparation of aqueous magnetic liquids in alkaline and acidic media. IEEE T Magn 17(2):1247–1248CrossRefGoogle Scholar
  136. 136.
    Schwertmann U, Cornell RM (2000) Iron oxides in the laboratory: preparation and characterization, 2nd edn. Wiley-VCH, New YorkGoogle Scholar
  137. 137.
    Zhao H, Saatchi K, Häfeli UO (2009) Preparation of biodegradable magnetic microspheres with poly(lactic acid)-coated magnetite. J Magn Magn Mater 321(10):1356–1363CrossRefGoogle Scholar
  138. 138.
    Lehmann AD, Parak WJ, Zhang F, Ali Z, Röcker C, Nienhaus GU, Gehr P, Rothen-Rutishauser B (2010) Fluorescent-magnetic hybrid nanoparticles induce a dose-dependent increase in proinflammatory response in lung cells in vitro correlated with intracellular localization. Small 6(6):753–762CrossRefGoogle Scholar
  139. 139.
    Lee K, Moon HY, Park C, Kim OR, Ahn E, Lee SY, Park HE, Ihm SH, Seung KB, Chang K, Yoon TJ, Lee C, Cheong C, Hong KS (2009) Magnetic resonance imaging of macrophage activity in atherosclerotic plaques of apolipoprotein E-deficient mice by using polyethylene glycolated magnetic fluorescent silica-coated nanoparticles. Curr Appl Phys 9(Sp. Iss. SI Suppl. 1):S15–S18CrossRefGoogle Scholar
  140. 140.
    Gao J, Zhang B, Gao Y, Pan Y, Zhang X, Xu B (2007) Fluorescent magnetic nanocrystals by sequential addition of reagents in a one-pot reaction: a simple preparation for multifunctional nanostructures. J Am Chem Soc 129(39):11, 928–11, 935CrossRefGoogle Scholar
  141. 141.
    Choi JH, Nguyen FT, Barone PW, Heller DA, Moll AE, Patel D, Boppart SA, Strano MS (2007) Multimodal biomedical imaging with asymmetric single-walled carbon nanotube/iron oxide nanoparticle complexes. Nano Lett 7(4):861–867CrossRefGoogle Scholar
  142. 142.
    Taylor KML, Jin A, Lin W (2008) Surfactant-assisted synthesis of nanoscale gadolinium metal–organic frameworks for potential multimodal imaging. Angew Chem Int Ed 47(40):7722–7725CrossRefGoogle Scholar
  143. 143.
    Galvez N, Fernandez B, Sanchez P, Morales-Sanfrutos J, Santoyo-Gonzalez F, Cuesta R, Bermejo R, Clemente-Leon M, Coronado E, Soriano-Portillo A, Dominguez-Vera JM (2009) Magnetic-fluorescent Langmuir–Blodgett films of fluorophore-labeled ferritin nanoparticles. Solid State Sci 11(4):754–759CrossRefGoogle Scholar
  144. 144.
    Grabarek Z, Gergely J (1990) Zero-length crosslinking procedure with the use of active esters. Anal Biochem 185(1):131–135CrossRefGoogle Scholar
  145. 145.
    Kolb HC, Finn MG, Sharpless KB (2001) Click chemistry: diverse chemical function from a few good reactions. Angew Chem Int Ed 40(11):2004–2021CrossRefGoogle Scholar
  146. 146.
    Gu H, Xu K, Yang Z, Chang CK, Xu B (2005) Synthesis and cellular uptake of porphyrin decorated iron oxide nanoparticles—a potential candidate for bimodal anticancer therapy. Chem Commun (34):4270–4272Google Scholar
  147. 147.
    Michalet X, Pinaud F, Bentolila L, Tsay J, Doose S, Li J, Sundaresan G, Wu A, Gambhir S, Weiss S (2005) Quantum dots for live cells, in vivo imaging, and diagnostics. Science 307(5709):538–544CrossRefGoogle Scholar
  148. 148.
    Gai S, Yang P, Li C, Wang W, Dai Y, Niu N, Lin J (2010) Synthesis of magnetic, up-conversion luminescent, and mesoporous core–shell-structured nanocomposites as drug carriers. Adv Funct Mater 20:1166–1172CrossRefGoogle Scholar
  149. 149.
    Park YI, Kim JH, Lee KT, Jeon K, Na HB, Yu JH, Kim HM, Lee N, Choi SH, Baik S, Kim H, Park SP, Park B, Kim YW, Lee SH, Yoon S, Song IC, Moon WK, Suh YD, Hyeon T (2009) Nonblinking and nonbleaching upconverting nanoparticles as an optical imaging nanoprobe and T1 magnetic resonance imaging contrast agent. Adv Mater 21(44):4467–4471CrossRefGoogle Scholar
  150. 150.
    Dubus S, Gravel J, Drogoff BL, Nobert P, Veres T, Boudreau D (2006) PCR-free DNA detection using a magnetic bead-supported polymeric transducer and microelectromagnetic traps. Anal Chem 78(13):4457–4464CrossRefGoogle Scholar
  151. 151.
    Liong M, Angelos S, Choi E, Patel K, Stoddart JF, Zink JI (2009) Mesostructured multifunctional nanoparticles for imaging and drug delivery. J Mater Chem 19(35):6251–6257CrossRefGoogle Scholar
  152. 152.
    Patel K, Angelos S, Dichtel WR, Coskun A, Yang Y, Zink JI, Stoddart JF (2008) Enzyme-responsive snap-top covered silica nanocontainers. J Am Chem Soc 130(8):2382–2383CrossRefGoogle Scholar
  153. 153.
    Saha S, Leung K, Nguyen T, Stoddart J, Zink J (2007) Nanovalves. Adv Funct Mater 17(5):685–693CrossRefGoogle Scholar
  154. 154.
    Angelos S, Choi E, Vögtle F, Cola LD, Zink JI (2007) Photo-driven expulsion of molecules from mesostructured silica nanoparticles. J Phys Chem C 111(18):6589–6592CrossRefGoogle Scholar
  155. 155.
    Ren C, Sun J, Zhang Y, Chen X, Hu Z (2009) Preparation and characterization of a novel fluorescent-magnetic nanomaterial. J Nanosci Nanotechnol 9(4):2664–2670CrossRefGoogle Scholar
  156. 156.
    Mayr T, Moser C, Khmant I (2007) Luminescence decay time encoding of magnetic micro spheres for multiplexed analysis. Anal Chim Acta 597(1):137–144CrossRefGoogle Scholar
  157. 157.
    Moser C, Mayr T, Klimant I (2006) Microsphere sedimentation arrays for multiplexed bioanalytics. Anal Chim Acta 558(1-2):102–109CrossRefGoogle Scholar
  158. 158.
    Josephson L (2006) Magnetic nanoparticles for MR imaging. In: Ferrari M, Lee AP, Lee LJ (eds) BioMEMS and biomedical nanotechnology. Springer, USA, pp 227–237CrossRefGoogle Scholar
  159. 159.
    Mailänder V, Lorenz MR, Holzapfel V, Musyanovych A, Fuchs K, Wiesneth M, Walther P, Landfester K, Schrezenmeier H (2008) Carboxylated superparamagnetic iron oxide particles label cells intracellularly without transfection agents. Mol Imaging Biol 10(3):138–146CrossRefGoogle Scholar
  160. 160.
    Schellenberger E, Rudloff F, Warmuth C, Taupitz M, Hamm B, Schnorr J (2008) Protease-specific nanosensors for magnetic resonance imaging. Bioconjug Chem 19(12):2440–2445CrossRefGoogle Scholar
  161. 161.
    Du GH, Liu ZL, Lu QH, Xia X, Jia LH, Yao KL, Chu Q, Zhang SM (2006) Fe3O4/CdSe/ZnS magnetic fluorescent bifunctional nanocomposites. Nanotechnology 17(12):2850–2854CrossRefGoogle Scholar
  162. 162.
    Rajh T, Chen LX, Lukas K, Liu T, Thurnauer MC, Tiede DM (2002) Surface restructuring of nanoparticles: An efficient route for ligand-metal oxide crosstalk. J Phys Chem B 106(41):10,543–10,552CrossRefGoogle Scholar
  163. 163.
    Corr SA, Byrne AO, Gun’ko YK, Ghosh S, Brougham DF, Mitchell S, Volkov Y, Prina-Mello A (2006) Magnetic-fluorescent nanocomposites for biomedical multitasking. Chem Commun (43):4474–4476Google Scholar
  164. 164.
    Williams DF (1987) Definitions in biomaterials. Elsevier, AmsterdamGoogle Scholar
  165. 165.
    Williams DF (2008) On the mechanisms of biocompatibility. Biomaterials 29(20):2941–2953CrossRefGoogle Scholar
  166. 166.
    Lin YS, Haynes CL (2009) Synthesis and characterization of biocompatible and size-tunable multifunctional porous silica nanoparticles. Chem Mater 21(17):3979–3986CrossRefGoogle Scholar
  167. 167.
    Zhang Z, Chen S, Jiang S (2006) Dual-functional biomimetic materials: nonfouling poly(carboxybetaine) with active functional groups for protein immobilization. Biomacromolecules 7(12):3311–3315CrossRefGoogle Scholar
  168. 168.
    Chen S, Jiang S (2008) An new avenue to nonfouling materials. Adv Mater 20(2):335–338CrossRefGoogle Scholar
  169. 169.
    Namba Y, Usami M, Suzuki O (1999) Highly sensitive electrochemiluminescence immunoassay using the ruthenium chelate-labeled antibody bound on the magnetic micro beads. Anal Sci 15(11):1087–1093CrossRefGoogle Scholar
  170. 170.
    Wellman A, Sepaniak M (2006) Magnetically-assisted transport evanescent field fluoroimmunoassay. Anal Chem 78(13):4450–4456CrossRefGoogle Scholar
  171. 171.
    Li Z, Tan B, Allix M, Cooper AI, Rosseinsky MJ (2008) Direct coprecipitation route to monodisperse dual-functionalized magnetic iron oxide nanocrystals without size selection. Small 4(2):231–239CrossRefGoogle Scholar
  172. 172.
    Kim YS, Kim BC, Lee JH, Kim J, Gu MB (2006) Specific detection of DNA using quantum dots and magnetic beads for large volume samples. Biotechnol Bioprocess Eng 11(5):449–454CrossRefGoogle Scholar
  173. 173.
    Danielli A, Arie A, Porat N, Ehrlich M (2008) Detection of fluorescent-labeled probes at subpicomolar concentrations by magnetic modulation. Opt Express 16(23):19,253–19,259CrossRefGoogle Scholar
  174. 174.
    Hermanson GT (2008) Bioconjugate techniques, 2nd edn. Academic, New YorkGoogle Scholar
  175. 175.
  176. 176.
  177. 177.
  178. 178.
    Micromod (2010) http://www.micromod.de
  179. 179.
    Polysciences (2010) http://www.polysciences.com
  180. 180.
  181. 181.
    Okamoto Y, Kitagawa F, Otsuka K (2007) Online concentration and affinity separation of biomolecules using multifunctional particles in capillary electrophoresis under magnetic field. Anal Chem 79(8):3041–3047CrossRefGoogle Scholar
  182. 182.
    Yeung Y, Wittrup K (2002) Quantitative screening of yeast surface-displayed polypeptide libraries by magnetic bead capture. Biotechnol Prog 18(2):212–220CrossRefGoogle Scholar
  183. 183.
    Elaissari A (2003) Colloidal polymers, 1st edn. Marcel Dekker, New YorkGoogle Scholar
  184. 184.
    Stöber W, Fink A, Bohn E (1968) Controlled growth of monodisperse silica spheres in the micron size range. J Colloid Interface Sci 26(1):62–69CrossRefGoogle Scholar
  185. 185.
    Wilson R, Spiller DG, Prior IA, Bhatt R, Hutchinson A (2007) Magnetic microspheres encoded with photoluminescent quantum dots for multiplexed detection. J Mater Chem 17(41):4400–4406CrossRefGoogle Scholar
  186. 186.
    Wilson R, Spiller DG, Prior IA, Veltkamp KJ, Hutchinson A (2007) A simple method for preparing spectrally encoded magnetic beads for multiplexed detection. ACS Nano 1(5):487–493CrossRefGoogle Scholar
  187. 187.
    Li L, Choo ESG, Liu Z, Ding J, Xue J (2008) Double-layer silica core–shell nanospheres with superparamagnetic and fluorescent functionalities. Chem Phys Lett 461(1–3):114–117CrossRefGoogle Scholar
  188. 188.
    Koren K, Mistlberger G, Aigner D, Borisov S, Zankel A, Pölt P, Klimant I (2010) Characterization of micrometer-sized magnetic optical sensor particles produced via spray-drying. Monatsh Chem (Chem Month) 141(6):691–697Google Scholar
  189. 189.
    Mistlberger G, Medina-Castillo AL, Borisov SM, Mayr T, Fernández-Gutiérrez A, Fernandez-Sanchez JF, Klimant I (2010) Miniemulsion solvent evaporation: a simple and versatile way to magnetic nanosensors. Microchim Acta (in press)Google Scholar
  190. 190.
    Borisov SM, Mayr T, Mistlberger G, Waich K, Koren K, Chojnacki P, Klimant I (2009) Precipitation as a simple and versatile method for preparation of optical nanochemosensors. Talanta 79(5):1322–1330CrossRefGoogle Scholar
  191. 191.
    Kumar P, Mittal KL (1999) Handbook of microemulsion science and technology. CRC, Boca RatonGoogle Scholar
  192. 192.
    Poland CA, Duffin R, Kinloch I, Maynard A, Wallace WAH, Seaton A, Stone V, Brown S, MacNee W, Donaldson K (2008) Carbon nanotubes introduced into the abdominal cavity of mice show asbestos-like pathogenicity in a pilot study. Nature Nanotech 3(7):423–428CrossRefGoogle Scholar
  193. 193.
    Guo J, Yang W, Wang C, He J, Chen J (2006) Poly(N-isopropylacrylamide)-coated luminescent/magnetic silica microspheres: Preparation, characterization, and biomedical applications. Chem Mater 18(23):5554–5562CrossRefGoogle Scholar
  194. 194.
    Kwon JT, Hwang SK, Jin H, Kim DS, Mina-Tehrani A, Yoon HJ, Chop M, Yoon TJ, Han DY, Kang YW, Yoon BI, Lee JK, Cho MH (2008) Body distribution of inhaled fluorescent magnetic nanoparticles in the mice. J Occup Health 50(1):1–6CrossRefGoogle Scholar
  195. 195.
    Lee YK, Smith R, Kopelman R (2009) Nanoparticle PEBBLE sensors in live cells and in vivo. Annu Rev Anal Chem 2:57–76CrossRefGoogle Scholar
  196. 196.
    Lewin M, Carlesso N, Tung C, Tang X, Cory D, Scadden DT, Weissleder R (2000) Tat peptide-derivatized magnetic nanoparticles allow in vivo tracking and recovery of progenitor cells. Nat Biotechnol 18(4):410–414CrossRefGoogle Scholar
  197. 197.
    Josephson L, Kircher MF, Mahmood U, Tang Y, Weissleder R (2002) Near-infrared fluorescent nanoparticles as combined MR/optical imaging probes. Bioconjug Chem 13(3):554–560CrossRefGoogle Scholar
  198. 198.
    Lin YS, Wu SH, Hung Y, Chou YH, Chang C, Lin ML, Tsai CP, Mou CY (2006) Multifunctional composite nanoparticles: magnetic, luminescent, and mesoporous. Chem Mater 18(22):5170–5172CrossRefGoogle Scholar
  199. 199.
    Tu S, Golden M, Andreotti P, Yu L, Irwin P (2001) Applications of time-resolved fluoroimmunoassay to detect magnetic bead captured Escherichia coli O157:H7. J Rapid Methods Autom Microbiol 9(2):71–84CrossRefGoogle Scholar
  200. 200.
    Fan A, Lau C, Lu J (2005) Magnetic bead-based chemiluminescent metal immunoassay with a colloidal gold label. Anal Chem 77(10):3238–3242CrossRefGoogle Scholar
  201. 201.
    Scheffold A, Miltenyi S, Radbruch A (1995) Magnetofluorescent liposomes for increased sensitivity of immunofluorescence. Immunotechnology 1(2):127–137CrossRefGoogle Scholar
  202. 202.
    Kim K, Park J (2005) Magnetic force-based multiplexed immunoassay using superparamagnetic nanoparticles in microfluidic channel. Lab Chip 5(6):657–664CrossRefGoogle Scholar
  203. 203.
    Vojtíšek M, Iles A, Pamme N (2010) Rapid, multistep on-chip DNA hybridisation in continuous flow on magnetic particles. Biosens Bioelectron 25(9):2172–2176CrossRefGoogle Scholar
  204. 204.
    Ahn KC, Lohstroh P, Gee SJ, Gee NA, Lasley B, Hammock BD (2007) High-throughput automated luminescent magnetic particle-based immunoassay to monitor human exposure to pyrethroid insecticides. Anal Chem 79(23):8883–8890CrossRefGoogle Scholar
  205. 205.
    Kwon Y, Hara CA, Knize MG, Hwang MH, Venkateswaran KS, Wheeler EK, Bell PM, Renzi RF, Fruetel JA, Bailey CG (2008) Magnetic bead based immunoassay for autonomous detection of toxins. Anal Chem 80(22):8416–8423 CrossRefGoogle Scholar
  206. 206.
    Chang WS, Shang H, Perera RM, Lok Sm, Sedlak D, Kuhn RJ, Lee GU (2008) Rapid detection of dengue virus in serum using magnetic separation and fluorescence detection. Analyst 133(2):233–240CrossRefGoogle Scholar
  207. 207.
    Hazarika P, Jickells S, Wolff K, Russell D (2008) Imaging of latent fingerprints through the detection of drugs and metabolites. Angew Chem Int Ed 120(52):10,321–10,324Google Scholar
  208. 208.
    Dupont EP, Labonne E, Vandevyver C, Lehmann U, Charbon E, Gijs MAM (2010) Monolithic silicon chip for immunofluorescence detection on single magnetic beads. Anal Chem 82(1):49–52CrossRefGoogle Scholar
  209. 209.
    Dressman D, Yan H, Traverso G, Kinzler K, Vogelstein B (2003) Transforming single DNA molecules into fluorescent magnetic particles for detection and enumeration of genetic variations. Proc Natl Acad Sci U S A 100(15):8817–8822CrossRefGoogle Scholar
  210. 210.
    Lim SH, Bestvater F, Buchy P, Mardy S, Yu ADC (2009) Quantitative analysis of nucleic acid hybridization on magnetic particles and quantum dot-based probes. Sensors 9(7):5590–5599CrossRefGoogle Scholar
  211. 211.
    Wang G, Wang C, Ma Q, Su X (2010) Synthesis of dual fluorescent encoding magnetic composite nanoparticles. J Nanosci Nanotechnol 10(3, Sp. Iss. SI):1956–1963CrossRefGoogle Scholar
  212. 212.
    Borisov S, Klimant I (2007) Ultrabright oxygen optodes based on cyclometalated iridium(III) coumarin complexes. Anal Chem 79(19):7501–7509CrossRefGoogle Scholar
  213. 213.
    Mayr T, Borisov SM, Abel T, Enko B, Waich K, Mistlberger G, Klimant I (2009) Light harvesting as a simple and versatile way to enhance brightness of luminescent sensors. Anal Chem 81(15):6541–6545CrossRefGoogle Scholar
  214. 214.
    Resch-Genger U, Grabolle M, Cavaliere-Jaricot S, Nitschke R, Nann T (2008) Quantum dots versus organic dyes as fluorescent labels. Nat Meth 5(9):763–775CrossRefGoogle Scholar
  215. 215.
    Scheucher E, Mistlberger G, Klimant I (2010) Submicron magnetic optical sensor particles for monitoring pH in biological samples. AIP Conf Proc (in press)Google Scholar
  216. 216.
    Anker JN, Behrend C, Kopelman R (2003) Aspherical magnetically modulated optical nanoprobes (MagMOONs). J Appl Phys 93(10):6698CrossRefGoogle Scholar
  217. 217.
    Ettenauer M, Posnicek T, Brandl M, Weber V, Falkenhagen D (2007) Magnetic fluorescent microparticles as markers for particle transfer in extracorporeal blood purification. Biomacromolecules 8(12):3693–3696CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  1. 1.Institute of Analytical Chemistry and Food ChemistryGraz University of TechnologyGrazAustria

Personalised recommendations