Anatomical Science International

, Volume 94, Issue 1, pp 86–100 | Cite as

Distribution of somatostatin-28 (1-12), calcitonin gene-related peptide, and substance P in the squirrel monkey brainstem: an immunocytochemical study

  • E. Duque-DíazEmail author
  • R. Coveñas
Original Article


Using an immunocytochemical technique, we have studied the distribution of fibers and cell bodies containing somatostatin-28 (1-12) [SOM-28 (1-12)], calcitonin gene-related peptide (CGRP), and substance P (SP) in the brainstem of Saimiri sciureus. The distribution of the peptidergic cell bodies was very restricted: perikarya containing SOM-28 (1-12) were only observed in the substantia grisea centralis, while no immunoreactive cell bodies containing CGRP or SP were visualized. Fibers containing SOM-28 (1-12), CGRP, or SP were widely distributed in the brainstem: immunoreactive fibers containing SOM-28 (1-12) showed the most widespread distribution and were the most abundant. The distribution of SOM-28 (1-12)-, CGRP- or SP-immunoreactive fibers was very similar. Colocalization of immunoreactive fibers containing SOM-28 (1-12), CGRP or SP was observed in many brainstem nuclei. A neuroanatomical relationship between CGRP- and SP-immunoreactive fibers was observed, although this relationship was less marked for SOM-28 (1-12) and SP and lower still for SOM-28 (1-12) and CGRP. The widespread distribution of the peptidergic fibers suggests that the studied neuropeptides are involved in many physiological actions.


SOM-28 (1-12) CGRP SP Mesencephalon Pons Medulla oblongata Saimiri sciureus 



Nucleus annularis


Aquaeductus Sylvii


Brachium conjunctivum


Brachium pontis


Nucleus caudatus


Nucleus cochlearis dorsalis


Nucleus cuneatus


Nucleus cuneatus lateralis


Centrum medianum thalami


Colliculus superior


Corpus trapezoideum


Nucleus cochlearis ventralis


Decussatio brachii conjunctivi


Nucleus dorsalis tegmenti (Gudden)


Decussatio pyramidum


Nucleus dorsalis raphae


Nucleus dorsalis nervi vagi


Funiculus gracilis


Formatio reticularis myelencephali


Formatio reticularis pontis oralis


Formatio reticularis tegmenti mesencephali


Nucleus gracilis


Substantia grisea centralis


Substantia grisea centralis, pars ventralis


Corpus geniculatum lateralis


Corpus geniculatum medialis


Griseum pontis


Nucleus interpeduncularis


Locus coeruleus


Nucleus lemnisci lateralis


Nucleus lateralis posterior thalami


Nucleus medialis dorsalis thalami


Nucleus colliculi inferioris


Nucleus centralis superior tegmenti


Nucleus nervi oculomotorii


Nervus trochlearis


Nucleus nervi trochlearis


Nucleus ruber


Nucleus tractus spinalis nervi trigemini


Nucleus tractus solitarii


Nervus trigemini


Nucleus nervi abducentis


Nucleus nervi facialis


Nervus acusticus


Nucleus nervi hypoglossi


Nucleus olivaris inferior


Nucleus olivaris inferior, accessorius medialis


Nucleus olivaris inferior principalis


Nucleus olivaris superior


Nucleus parabrachialis lateralis


Nucleus parabrachialis medialis


Nucleus parafascicularis thalami


Nucleus praepositus


Nucleus praetectalis


Nucleus peripeduncularis oralis thalami


Nucleus principalis n. trigemini


Tractus pyramidalis


Nucleus reticularis lateralis myelencephali


Nucleus reticularis paramedianus myelencephali


Nucleus reticularis tegmenti pontis


Substantia nigra, pars compacta


Substantia nigra, pars diffusa


Tractus tectospinalis nervi trigemini


Tractus tectospinalis


Nucleus vestibularis inferior


Nucleus vestibularis lateralis


Nucleus vestibularis medialis


Nucleus vestibularis superior



This work has been supported by the Universidad de Santander UDES, Bucaramanga (Colombia). The authors wish to thank Professor Gérard Tramu (Université de Bordeaux I, France) for the gift of primary antibodies, and the language service of the Universidad de Santander UDES (Colombia) for supervising the English text. This work is dedicated to Professor Julio Villalobos (Universidad del Valle, Cali, Colombia).

Compliance with ethical standards

Conflict of interest



  1. Ardvisson U, Ulfhake B, Cullheim S, Terenius L, Hökfelt T (1991) Calcitonin gene-related peptide in the monkey spinal cord and medulla oblongata. Brain Res 558:330–334CrossRefGoogle Scholar
  2. Batten TF, Lo VK, Maqbool A, McWilliam PN (1989) Distribution of calcitonin gene-related peptide-like immunoreactivity in the medulla oblongata of the cat, in relation to choline acetyltransferase-immunoreactive motoneurones and substance P-immunoreactive fibers. J Chem Neuroanat 2:163–176Google Scholar
  3. Beal MF, Mazurek MF, Martin JB (1987) A comparison of somatostatin and neuropeptide Y distribution in monkey brain. Brain Res 405:213–219CrossRefGoogle Scholar
  4. Bennett-Clarke C, Joseph SA (1986) Immunocytochemical localization of somatostatin in human brain. Peptides 7:877–884CrossRefGoogle Scholar
  5. Bouras C, Vallet PG, Dobrinov H, de St-Hilaire S, Constantinidis J (1986) Substance P neuronal cell bodies in the human brain: complete mapping by inmunohistofluorescence. Neurosci Lett 69:31–36CrossRefGoogle Scholar
  6. Bouras C, Magistretti PJ, Morrison JH, Constantinidis J (1987) An immunohistochemical study of pro-somatostatin-derived peptides in the human brain. Neuroscience 22:781–800CrossRefGoogle Scholar
  7. Carpenter MB, Huang Y, Pereira AB, Hersh LB (1990) Immunocytochemical features of the vestibular nuclei in the monkey and cat. J Hirnforsch 31:585–599Google Scholar
  8. Charara A, Parent A (1998) Chemoarchitecture of the primate dorsal raphe nucleus. J Chem Neuroanat 2:111–127CrossRefGoogle Scholar
  9. Chigr F, Najimi M, Leduque P et al (1989) Anatomical distribution of somatostatin immunoreactivity in the infant brainstem. Neuroscience 29:615–628CrossRefGoogle Scholar
  10. Chigr F, Najimi M, Leduque P, Chayvialle JA, Bouvier R, Kopp N (1991) Anatomical distribution of substance P-immunoreactive neurons in human brainstem during the first postnatal year. Brain Res Bull 26:515–523CrossRefGoogle Scholar
  11. Conti F, Sternini C (1989) Calcitonin gene-related peptide (CGRP)-positive neurons and fibers in the cat periaqueductal grey matter. Somatosen Motor Res 6:497–511CrossRefGoogle Scholar
  12. Coveñas R, Belda M, Marcos P et al (2003) Neuropeptides in the cat brainstem. Curr Top Pep Prot Res 5:41–61Google Scholar
  13. Coveñas R, Duque E, Mangas A, Marcos P, Narváez JA (2008) Neuropeptides in the monkey (Macaca fascicularis) brainstem. In: Mangas A, Coveñas R, Geffard M (eds) Brain molecules: from vitamins to molecules for axonal guidance. Transworld Research Network, Trivandrum, pp 131–156Google Scholar
  14. de la Calle S, Saper CB (2000) Calcitonin gene-related peptide-like immunoreactivity marks putative visceral sensory pathways in human brain. Neuroscience 100:115–130CrossRefGoogle Scholar
  15. de León M, Coveñas R, Narváez JA, Tramu G, Aguirre JA, González-Barón S (1992) Distribution of somatostatin-28 (1-12) in the cat brainstem: an immunocytochemical study. Neuropeptides 21:1–11CrossRefGoogle Scholar
  16. de Souza E, Coveñas R, Yi P et al (2008) Mapping of CGRP in the alpaca (Lama pacos) brainstem. J Chem Neuroanat 35:346–355CrossRefGoogle Scholar
  17. de Souza E, Sánchez ML, Aguilar LA, Díaz-Cabiale Z, Narváez JA, Coveñas R (2015) Mapping of somatostatin-28 (1-12) in the alpaca (Lama pacos) brainstem. Microsc Res Tech 78:363–374CrossRefGoogle Scholar
  18. del Fiacco M, Dessi ML, Levanti LC (1984) Topographical localization of substance P in the human post-mortem brainstem. An immunohistochemical study in the newborn and adult tissue. Neuroscience 12:591–611CrossRefGoogle Scholar
  19. Desjardins C, Parent A (1992) Distribution of somatostatin immunoreactivity in the forebrain of the squirrel monkey: basal ganglia and amygdala. Neuroscience 74:115–133CrossRefGoogle Scholar
  20. DiFiglia M, Aronin N, Leeman S (1981) Immunoreactive substance P in the substantia nigra of the monkey: light and electron microscopic localization. Brain Res 233:381–388CrossRefGoogle Scholar
  21. DiFiglia M, Aronin N, Leeman S (1982) Light microscopic and ultrastructural localization of immunoreactive substance P in the dorsal horn of monkey spinal cord. Neuroscience 7:1127–1139CrossRefGoogle Scholar
  22. Duque E, Mangas A, Díaz-Cabiale Z, Narváez JA, Coveñas R (2011) Neuropeptides in the monkey brainstem. In: Williams RM (ed) Monkeys: biology, behavior and disorders. Nova Science, New York, pp 151–166Google Scholar
  23. Duque E, Coveñas R, Mangas A, Salinas P, Díaz-Cabiale Z, Narváez JA (2013) Mapping of alpha-neo-endorphin and neurokinin B-immunoreactivity in the human brainstem. Brain Struct Funct 218:131–149CrossRefGoogle Scholar
  24. Duque-Díaz E, Díaz-Cabiale Z, Narváez JA, Coveñas R (2017) Mapping of enkephalins and adrenocorticotropic hormone in the squirrel monkey brainstem. Anat Sci Int 92:275–292CrossRefGoogle Scholar
  25. Emmers R, Aker K (1963) A stereotaxic atlas of the brain of the squirrel monkey (Saimiri sciureus). The University of Wisconsin Press, MadisonGoogle Scholar
  26. Halliday GM, Gai WP, Blessing WW, Geffen LB (1990) Substance P containing neurons in the pontomesencephalic tegmentum of the human brain. Neuroscience 39:81–96CrossRefGoogle Scholar
  27. Inagaki S, Parent A (1984) Distribution of substance P and enkephalin-like immunoreactivity in the substantia nigra of rat, cat and monkey. Brain Res Bull 13:319–329CrossRefGoogle Scholar
  28. Just S, Arndt K, Doods H (2005) The role of CGRP and nicotinic receptors in centrally evoked facial blood flow changes. Neurosci Lett 381:120–124CrossRefGoogle Scholar
  29. Kawai Y, Takami K, Shiosaka S et al (1985) Topographic localization of calcitonin gene-related peptide in the rat brain: an immunohistochemical analysis. Neuroscience 15:747–763CrossRefGoogle Scholar
  30. Maley BE, Newton BW, Howes KA et al (1987) Immunohistochemical localization of substance P and enkephalin in the nucleus tractus solitarii of the rhesus monkey, Macaca mulatta. J Comp Neurol 260:483–490CrossRefGoogle Scholar
  31. Marcos P, Coveñas R, Narváez JA et al (1999) Immunohistochemical mapping of enkephalins, NPY, CGRP, and GRP in the cat amygdala. Peptides 20:635–644CrossRefGoogle Scholar
  32. Nomura H, Shiosaka S, Tohyama M (1987) Distribution of substance P-like immunoreactive structures in the brainstem of the adult human brain: an immunocytochemical study. Brain Res 404:365–370CrossRefGoogle Scholar
  33. Okimura Y, Chiahara K, Abe H et al (1987) Calcitonin gene-related peptide-like immunoreactivity in the central nervous system and peripheral organs of rats. Regul Pept 17:327–337CrossRefGoogle Scholar
  34. Palkovits M (1988) Neuropeptides in the brain. In: Martini L, Ganong WF (eds) Frontiers in neuroendocrinology, vol 10. Raven, New York, pp 1–44Google Scholar
  35. Pego-Reigosa R, Coveñas R, Tramu G, Pesini P (2001) Distribution of somatostatin-28 (1-12) immunoreactivity in the diencephalon and the brainstem of the dog. Anat Embryol 203:61–76CrossRefGoogle Scholar
  36. Pintér E, Helyes Z, Szolcsányi J (2006) Inhibitory effect of somatostatin on inflammation and nociception. Pharmacol Ther 112:440–456CrossRefGoogle Scholar
  37. Quartu M, Diaz G, Floris A, Lai ML, Priestley JV, Del Fiacco M (1992) Calcitonin gene-related peptide in the human trigeminal sensory system at developmental and adult life stages: immunohistochemistry, neuronal morphometry and coexistence with substance P. J Chem Neuroanat 5:143–157CrossRefGoogle Scholar
  38. Rikard-Bell GC, Törk I, Sullivan C, Scheibner T (1990) Distribution of substance P-like immunoreactive fibres and terminals in the medulla oblongata of the human infant. Neuroscience 34:133–148CrossRefGoogle Scholar
  39. Samsam M, Coveñas R, Ahangari R, Yajeya J, Narváez JA, Tramu G (2000) Simultaneous depletion of neurokinin A, substance P and calcitonin gene-related peptide from the caudal trigeminal nucleus of the rat during electrical stimulation of the trigeminal ganglion. Pain 84:389–395CrossRefGoogle Scholar
  40. Samsam M, Coveñas R, Csillik B et al (2001) Depletion of substance P, neurokinin A and calcitonin gene-related peptide from the contralateral and ipsilateral caudal trigeminal nucleus following unilateral electrical stimulation of the trigeminal ganglion; a possible neurophysiological and neuroanatomical link to generalized head pain. J Chem Neuroanat 21:161–169CrossRefGoogle Scholar
  41. Sánchez ML, Vecino E, Coveñas R (2014) Distribution of CGRP in the minipig brain stem. Microsc Res Tech 77:374–384CrossRefGoogle Scholar
  42. Sánchez ML, Vecino E, Coveñas R (2016) Distribution of neurotensin and somatostatin-28 (1-12) in the minipig brainstem. Anat Histol Embryol 45:260–276CrossRefGoogle Scholar
  43. Seress L, Leranth C (1996) Distribution of substance P-immunoreactive neurons and fibers in the monkey hippocampal formation. Neuroscience 71:633–650CrossRefGoogle Scholar
  44. Tashiro T, Takahashi O, Satoda T, Matsushima R, Uemura-Sumi M, Mizuno M (1991) Distribution of axons showing calcitonin gene-related peptide and/or substance P-like immunoreactivity in the sensory trigeminal nuclei of the cat. Neurosci Res 11:119–133CrossRefGoogle Scholar
  45. Unger JW, Lange W (1991) Immunohistochemical mapping of neurophisins and calcitonin gene-related peptide in the human brainstem and cervical spinal cord. J Chem Neuroanat 4:299–309CrossRefGoogle Scholar
  46. Wynne B, Robertson D (1997) Somatostatin and substance P-like immunoreactivity in the auditory brainstem of the adult rat. J Chem Neuroanat 12:259–266CrossRefGoogle Scholar

Copyright information

© Japanese Association of Anatomists 2018

Authors and Affiliations

  1. 1.Universidad de Santander UDES, School of Medicine, Neuroscience GroupBucaramangaColombia
  2. 2.Institute of Neuroscience of Castilla y León (INCYL), Laboratory of Neuroanatomy of the Peptidergic Systems (Lab. 14)University of SalamancaSalamancaSpain

Personalised recommendations