Advertisement

Anatomical Science International

, Volume 91, Issue 4, pp 313–324 | Cite as

Pleiotropic and retinoprotective functions of PACAP

  • Seiji ShiodaEmail author
  • Fumiko Takenoya
  • Nobuhiro Wada
  • Takahiro Hirabayashi
  • Tamotsu Seki
  • Tomoya Nakamachi
Review Article

Abstract

Pituitary adenylate cyclase-activating polypeptide (PACAP) is a 27- or 38-amino acid neuropeptide, which belongs to the vasoactive intestinal polypeptide/glucagon/secretin family. PACAP and its three receptor subtypes are expressed in neural tissues of the eye, including the retina, cornea and lacrimal gland, and PACAP is known to exert pleiotropic effects throughout the central nervous system. This review provides an overview of current knowledge regarding the cell protective effects, mechanisms of action and therapeutic potential of PACAP in response to several types of eye injury.

Keywords

PACAP Neurotropic function Retinoprotection Dry eye 

Notes

Acknowledgments

The authors would like to thank Dr. Rakwal Randeep and Ms. Junko Shibato for the CRMP2 research described in this paper. They also thank Drs. Dora Reglodi of Pecs University in Hungary and Hitoshi Hashimoto of Osaka University in Japan for their help in dry eye research.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Grant sponsor

JSPS KAKENHI grants 23249079, 15K15670, 16H02684.

References

  1. Arimura A (1992) Pituitary adenylate cyclase activating polypeptide (PACAP): discovery and current status of research. Regul Pept 37:287–303PubMedGoogle Scholar
  2. Arimura A, Shioda S (1995) Pituitary adenylate cyclase activating polypeptide (PACAP) and its receptors: neuroendocrine and endocrine interactions. Front Neuroendocrinol 16:53–88CrossRefPubMedGoogle Scholar
  3. Asghar MS, Hansen AE, Amin FM et al (2011) Evidence for a vascular factor in migraine. Ann Neurol 69:635–645CrossRefPubMedGoogle Scholar
  4. Atlasz T, Szabadfi K, Kiss P et al (2008) PACAP-mediated neuroprotection of neurochemically identified cell types in MSG-induced retinal degeneration. J Mol Neurosci 36:97–104CrossRefPubMedGoogle Scholar
  5. Atlasz T, Szabadfi K, Kiss P et al (2010) Evaluation of the protective effects of PACAP with cell-specific markers in ischemia-induced retinal degeneration. Brain Res Bull 81:497–504CrossRefPubMedGoogle Scholar
  6. Atlasz T, Szabadfi K, Kiss P et al (2011) Effects of PACAP in UV-A radiation-induced retinal degeneration models in rats. J Mol Neurosci 43:51–57CrossRefPubMedGoogle Scholar
  7. Babai N, Atlasz T, Tamas A et al (2005) Degree of damage compensation by various PACAP treatments in monosodium glutamate-induced retinal degeneration. Neurotox Res 8:227–233CrossRefPubMedGoogle Scholar
  8. Bangnoli P, Dal Monte M, Casini G (2003) Expression of neuropeptides and their receptors in the developing retina of mammals. Histol Histopathol 18:1219–1242Google Scholar
  9. Banks WA, Kastin AJ, Komaki G, Arimura A (1993) Passage of pituitary adenylate cyclase activating polypeptide1-27 and pituitary adenylate cyclase activating polypeptide1-38 across the blood-brain barrier. J Pharmacol Exp Ther 267:690–696PubMedGoogle Scholar
  10. Banks WA, Uchida D, Arimura A, Somogyvari-Vigh A, Shioda S (1996) Transport of pituitary adenylate cyclase-activating polypeptide across the blood-brain barrier and the prevention of ischemia-induced death of hippocampal neurons. Ann NY Acad Sci 805:270–277CrossRefPubMedGoogle Scholar
  11. Birk S, Sitarz JT, Petersen KA et al (2007) The effect of intravenous PACAP38 on cerebral hemodynamics in healthy volunteers. Regul Pept 140:185–191CrossRefPubMedGoogle Scholar
  12. Boni LJ, Ploug KB, Olesen J, Jansen-Olesen I, Gupta S (2009) The in vivo effect of VIP, PACAP-38 and PACAP-27 and mRNA expression of their receptors in rat middle meningeal artery. Cephalalgia 29:837–847CrossRefPubMedGoogle Scholar
  13. Borba JC, Henze IP, Silveira MS et al (2005) Pituitary adenylate cyclase-activating polypeptide (PACAP) can act as deteminant of the tyrosine hydroxylase phenotype of dopaminergic cells during retina development. Brain Res Dev Brain Res 156:193–201CrossRefPubMedGoogle Scholar
  14. Boyd ZS, Kriatchko A, Yang J, Agarwal N, Wax MB, Patil RV (2003) Interleukin-10 receptor signaling through STAT-3 regulates the apoptosis of retinal ganglion cells in response to stress. Invest Ophthalmol Vis Sci 44:5206–5211CrossRefPubMedGoogle Scholar
  15. Colton CA (2009) Heterogeneity of microglial activation in the innate immune response in the brain. J Neuroimmune Pharmacol 4:399–418CrossRefPubMedPubMedCentralGoogle Scholar
  16. D’Agata V, Cavallaro S (1998) Functional and molecular expression of PACAP/VIP receptors in the rat retina. Brain Res Mol Brain Res 54:161–164CrossRefPubMedGoogle Scholar
  17. D’Alessandrom A, Cerivia D, Catalanni E, Gevi F, Zolla L, Casini G (2014) Protective effects of the neuropeptides PACAP, substance P and the somatostatin analogue octreotide in retinal ischemia: a metabolomic analysis. Mol Biosystem 10:1290–1304CrossRefGoogle Scholar
  18. Danyadi B, Szabadfi K, Reglodi D et al (2014) PACAP application improves functional outcome of chronic retinal ischemic injury in rats—evidence from electroretinographic measurements. J Mol Neurosci 54:293–299CrossRefPubMedGoogle Scholar
  19. Ding Y, Cheng H, Yu R, Tang C, Liu X, Chen J (2012) Effects of cyclopeptide C*HSDGIC* from the cyclization of PACAP (1–5) on the proliferation and UVB-induced apoptosis of the retinal ganglion cell line RGC-5. Peptides 36:280–285CrossRefPubMedGoogle Scholar
  20. Drago F, Valzelli S, Emmi I, Marino A, Scalia CC, Marino V (2001) Latanoprost exerts neuroprotective activity in vitro and in vivo. Surv Opthalmol Suppl 1:S162–S175Google Scholar
  21. Elsas T, Uddman R, Sundler F (1996) Pituitary adenylate cyclase-activating peptide immunoreactive nerve fibers in the cat eye. Graefes Arch Clin Opthalmol 234:573–580CrossRefGoogle Scholar
  22. Endo K, Nakamachi T, Seki T et al (2011) Neuroprotective effect of PACAP against NMDA-induced retinal damage in the mouse. J Mol Neurosci 43:22–29CrossRefPubMedGoogle Scholar
  23. Fabian E, Reglodi D, Mester L et al (2012) Effects of PACAP on intracellular signaling pathways in human retinal pigment epithelia cells exposed to oxidative stress. J Mol Neurosci 48:493–500CrossRefPubMedGoogle Scholar
  24. Gaal V, Mark L, Kiss P et al (2008) Investigation of the effects of PACAP on the composition of tear and endolymph proteins. J Mol Neurosci 36:321–329CrossRefPubMedGoogle Scholar
  25. Gordon S, Taylor PR (2005) Monocyte and macrophage heterogeneity. Nat Rev Immunol 5:953–964CrossRefPubMedGoogle Scholar
  26. Grone BP, Zhao S, Chen CC, Fernald RD (2007) Localization and diurnal expression of melanopsin, vertebrate ancient opsin, and pituitary adenylate cyclase activating peptide mRNA in a teleost retina. J Biol Rhythm 22:558–561CrossRefGoogle Scholar
  27. Harmar AJ, Fahrenkrug J, Gozes I et al (2012) Pharmacology and functions of receptors for vasoactive intestinal peptide and pituitary adenylate cyclase-activating polypeptide: IUPHAR review 1. Br J Pharmacol 166:4–17CrossRefPubMedPubMedCentralGoogle Scholar
  28. Hori M, Nakamachi T, Rakwal R et al (2012a) Unraveling the ischemic brain transcriptome in a permanent middle cerebral artery occlusion mouse model by DNA microarray analysis. Dis Model Mech 5:270–283CrossRefPubMedGoogle Scholar
  29. Hori M, Nakamachi T, Rakwal R et al (2012b) Transcriptomics and proteomics analyses of the PACAP38 influenced ischemic brain in permanent middle cerebral artery occlusion model mice. J Neuroinflamm 9:256–274CrossRefGoogle Scholar
  30. Hori M, Nakamachi T, Shibato J et al (2014) PACAP38 differentially effects genes and CRMP2 protein expression in ischemic core and penumbra regions of permanent middle cerebral artery occlusion model mice brain. Int J Mol Sci 15:17014–17034CrossRefPubMedPubMedCentralGoogle Scholar
  31. Izumi S, Seki T, Shioda S, Zhou CJ, Arimura A, Koide R (2000) Ultrastructural localization of PACAP immunoreactivity in the rat retina. Ann NY Acad Sci 921:317–320CrossRefPubMedGoogle Scholar
  32. Jarkman S, Kato M, Bragadottir R (1998) Effects of adenylate cyclase-activating-polypeptide on the direct-current electroretinogram of the rabbit eye. Ophthalmic Res 30:199–206CrossRefPubMedGoogle Scholar
  33. Jozsa R, Somogyvary-Vigh A, Reglodi D, Hollosy Arimura A (2001) Distribution and daily variations of PACAP in the chicken brain. Peptides 22:1371–1377CrossRefPubMedGoogle Scholar
  34. Karlstetter M, Ebert S, Langmann T (2010) Microglia in the healthy and degenerating retina: insights from novel mouse models. Immunobiology 215:685–691CrossRefPubMedGoogle Scholar
  35. Kettenmann H, Hanisch UK, Noda M, Verkhratsky A (2011) Physiology of microglia. Physiol Rev 91:461–553CrossRefPubMedGoogle Scholar
  36. Kido N, Tanihara H, Honjo M (2000) Neuroprotective effects of brain-derived neurotrophic factor in eyes with NMDA-induced neuronal death. Brain Res 884:59–67CrossRefPubMedGoogle Scholar
  37. Kubrusly RC, da Cunha MC, Reis RA et al (2005) Expression of functional receptors and transmitter enzymes in cultured Muller cells. Brain Res 1038:141–149CrossRefPubMedGoogle Scholar
  38. Lakk M, Szabo B, Volgyi B, Gabriel R, Denes V (2012) Development-related splicing regulates pituitary adenylate cyclase-activating polypeptide (PACAP) receptors in the retina. Invest Opthalmol Vis Sci 53:7825–7832CrossRefGoogle Scholar
  39. Lang B, Zhao L, Cai L et al (2010) GABAergic amacrine cells and visual function are reduced in PAC1R trangenic mice. Neuropharmacol 58:215–225CrossRefGoogle Scholar
  40. Langmann T (2007) Microglia activation in retinal degeneration. J Leukoc Biol 81:1345–1351CrossRefPubMedGoogle Scholar
  41. Lee WR, Grierson I (1977) Macrophage infiltration in the human retina. Albrecht von Graefes Archiv fur klinische und experimentelle Ophthalmologie 203:293–309CrossRefPubMedGoogle Scholar
  42. Li M, David C, Kikuta T, Somogyvari-Vigh A, Arimura A (2005) Signaling cascades involved in neuroprotection by subpicomolar pituitary adenylate cyclase-activating polypeptide 38. J Mol Neurosci 27:91–105CrossRefPubMedGoogle Scholar
  43. Ma Y, Zhao S, Wang X et al (2015) A new recombinant PACAP-derived peptide efficiently promotes corneal wound repairing and lacrimal secretion. Invest Opthalmol Vis Sci 56:43336–44349Google Scholar
  44. Markhotina N, Liu GJ, Martin DK (2007) Contractility of retinal pericytes grown on sillicone elastomer substrates is through a protein kinase A-mediated intracellular pathway in response to vasoactive peptides. IET Nanobiotechnol 1:44–51CrossRefPubMedGoogle Scholar
  45. Martinez FO, Sica A, Mantovani A, Locati M (2008) Macrophage activation and polarization. Front Biosci 13:453–461CrossRefPubMedGoogle Scholar
  46. Mathieu M, Ciario M, Trucco N et al (2004) Pituitary adenylate cyclase-activating polypeptide in the brain, spinal cord and sensory organs of the zebrafish, Danio rerio, during development. Brain Res Dev Brain Res 151:169–185CrossRefPubMedGoogle Scholar
  47. Mathieu M, Girosi L, Vallarino M, Tagliafierro G (2005) PACAP in developing sensory and peripheral organs of the zebrafish, Danio rerio. Eur J Histochem 49:167–178PubMedGoogle Scholar
  48. Mathis U, Schaeffel F (2007) Glucagon-related peptides in the mouse retina and the effects of deprivation of form vision. Graef’s Arch Clin Exp Opthalmol 245:267–275CrossRefGoogle Scholar
  49. Matsumoto M, Nakamachi T, Watanabe J et al (2016) Pituitary adenylte cyclase-activating polypeptide (PACAP) is involved in adult mouse hippocampal neurogenesis after stroke. J Mol Neurosci 59:270–279CrossRefPubMedGoogle Scholar
  50. Mester L, Kovacs K, Racz B et al (2011) Pituitary adenylate cyclase-activating polypeptide is protective against oxidative stress in human retinal pigment epithelial cells. J Mol Neurosci 43:35–43CrossRefPubMedGoogle Scholar
  51. Miyata A, Arimura A, Dahl RR et al (1989) Isolation of a novel 38 residue-hypothalamic polypeptide which stimulates adenylate cyclase in pituitary cells. Biochem Biophys Res Commun 16:567–574CrossRefGoogle Scholar
  52. Mosser DM, Edwards JP (2008) Exploring the full spectrum of macrophage activation. Nat Rev Immunol 8:958–969CrossRefPubMedPubMedCentralGoogle Scholar
  53. Nakamachi T, Li M, Shioda S, Arimura A (2006) Signaling involved in pituitary adenylate cyclase-activating polypeptide-stimulated ADNP expression. Peptides 27:1859–1864CrossRefPubMedGoogle Scholar
  54. Nakamachi T, Ohtaki H, Seki T et al (2016) PACAP suppressed dry eye signs by stimulating tear secretion. Nat Commun (in press)Google Scholar
  55. Nakatani M, Seki T, Shinohara Y et al (2006) Pituitary adenylate cyclase-activating peptide (PACAP) stimulates production of interleukin-6 in rat Muller cells. Peptides 27:1871–1876CrossRefPubMedGoogle Scholar
  56. Nilsson SF (2014) PACAP-27 and PACAP-38: vascular effects in the eye and some other tissues in the rabbit. Eur J Pharmacol 253:17–25CrossRefGoogle Scholar
  57. Nilsson SF, De Neef P, Robberrecht P, Christophe L (1994) Characterization of ocular receptors for adenylate cyclase activating polypeptide (PACAP) and their coupling to adenylate cyclase. Exp Eye Res 58:459–467CrossRefPubMedGoogle Scholar
  58. Njaine B, Martins RA, Santiago MF, Linden R, Silveira MS (2010) Pituitary adenylyl cyclase-activating polypeptide controls the proliferation of retinal progenitor cells through downregulation of cyclin D1. Eur J Neurosci 32:311–321CrossRefPubMedGoogle Scholar
  59. Njaine B, Rocha-Martins M, Vieira-Vieira CH et al (2014) Pleiotropic functions of pituitary adenylyl cyclase-activating polypeptide on retinal ontogenesis: involovement of KLF4 in the control of progenitor cell proliferation. J Mol Neurosci 54:430–432CrossRefPubMedGoogle Scholar
  60. Ohtaki H, Nakamachi T, Dohi K et al (2006) Pituitary adenylate cyclase-activating polypeptide (PACAP) decreases ischemic neuronal cell death in association with IL-6. Proc Natl Acad Sci USA 103:7488–7493CrossRefPubMedPubMedCentralGoogle Scholar
  61. Olianas MC, Ennas MG, Lampis G, Onali P (1996) Presence of pituitary adenylate cyclase activating polypeptide in Y-79 human retinoblastoma cells. J Neurochem 67:1293–1300CrossRefPubMedGoogle Scholar
  62. Olianas MC, Ingianni A, Sogos V, Onali P (1997) Expression of pituitary adenylate cyclase-activating polypeptide (PACAP) receptors and PACAP in human fetal retina. J Neurochem 69:1213–1218CrossRefPubMedGoogle Scholar
  63. Onali P, Olianas MC (1994) PACAP is a potent and highly effective stimulation of adenylyl cyclase activity in the retinas of different mammalian species. Brain Res 641:132–134CrossRefPubMedGoogle Scholar
  64. Racz B, Tamas A, Kiss P et al (2006) Involvement of ERK and CREB signaling pathways in the protective effect of PACAP in monosodium glutamate-induced retinal lesion. Ann NY Acad Sci 1070:507–511CrossRefPubMedGoogle Scholar
  65. Racz B, Gasz B, Borsiczky B et al (2007) Protective effects of pituitary adenylate cyclase activating polypeptide in endothelia cells against oxidative stress-induced apoptosis. Gen Comp Endocrinol 153:115–123CrossRefPubMedGoogle Scholar
  66. Reglodi D, Somogyvari-Vigh A, Vigh J et al (2001) Pituitary adenylate cyclase activating polypeptide is highly abundant in the nervous system of the anoxia-tolerant turtle, Pseudemys scripta elegans. Peptides 22:873–878CrossRefPubMedGoogle Scholar
  67. Rocz B, Tamas A, Kiss P et al (2006) Involvement of ERK and CREB signaling pathways in the protective effect of PACAP in monosodium glutamate-induced retinal lesion. Ann NY Acad Sci 1070:507–511CrossRefGoogle Scholar
  68. Schwartz M (2003) Macrophages and microglia in central nervous system injury: are they helpful or harmful? J Cereb Blood Flow Metab 223:385–394CrossRefGoogle Scholar
  69. Seki T, Shioda S, Ogino D, Nakai Y, Arimura A, Koide R (1997) Distribution and ultrastructural localization of a receptor for pituitary adenylate cyclase activating polypeptide and its mRNA in the rat retina. Neurosci Lett 238:127–130CrossRefPubMedGoogle Scholar
  70. Seki T, Shioda S, Nakai Y, Arimura A, Koide R (1998) Distribution and ultrastructural localization of pituitary adenylate cyclase-activating polypeptide (PACAP) and its receptor in the rat retina. Ann NY Acad Sci 865:408–411CrossRefPubMedGoogle Scholar
  71. Seki T, Izumi S, Shioda S, Zhou CJ, Arimura A, Koide R (2000a) Gene expression for PACAP receptor mRNA in the rat retina by in situ hybridization and in situ RT-PCR. Ann NY Acad Sci 921:366–369CrossRefPubMedGoogle Scholar
  72. Seki T, Shioda S, Izumi S, Arimura A, Koide R (2000b) Electron microscopic observation of pituitary adenylate cyclase-activating polypeptide (PACAP)-containing neurons in the rat retina. Peptides 21:109–113CrossRefPubMedGoogle Scholar
  73. Seki M, Tanaka T, Nawa H et al (2004) Involvement of brain-derived neurotrophic factor in early retinal neuropathy of streptozotocin-induced diabetes in rats. Diabetes 53:2412–2419CrossRefPubMedGoogle Scholar
  74. Seki T, Nakatani M, Taki C et al (2006) Neuroprotective effect of PACAP against kainic acid-induced neurotoxicity in rat retina. Ann NY Acad Sci 1070:531–534CrossRefPubMedGoogle Scholar
  75. Seki T, Itoh H, Nakamachi T, Shioda S (2008) Suppression of rat retinal ganglion cell death by PACAP following optic nerve transection in the rat. J Mol Neurosci 36:57–60CrossRefPubMedGoogle Scholar
  76. Seki T, Itoh H, Nakamachi T et al (2011) Suppression of rat retinal ganglion cell death by PACAP following transient ischemia induced by high intraocular pressure. J Mol Neurosci 43:30–34CrossRefPubMedGoogle Scholar
  77. Sherwood NM, Krueckl SL, McRory JE (2000) The origin and function of the pituitary adenylate cyclase-activating polypeptide (PACAP)/glucagon superfamily. Endocr Rev 21:619–670PubMedGoogle Scholar
  78. Shioda S, Nakamachi T (2015) PACAP as a neuroprotective factor in ischemic neuronal injuries. Peptides 72:202–207CrossRefPubMedGoogle Scholar
  79. Shioda S, Ohtaki H, Nakamachi T et al (2006) Pleiotropic functions of PACAP in the CNS: neuroprotection and neurodevelopment. Ann NY Acad Sci 1070:550–560CrossRefPubMedGoogle Scholar
  80. Shoge K, Mishima HK, Saitoh T et al (1999) Attenuation by PACAP of glutamate-induced neurotoxicity in cultured retinal neurons. Brain Res 839:66–73CrossRefPubMedGoogle Scholar
  81. Silveira MS, Costa MR, Bossa M, Linden R (2002) Pituitary adenylyl cyclase-activating polypeptide prevents induced cell death in retinal tissue through activation of cyclic AMP-dependent protein kinase. J Biol Chem 277:16075–16080CrossRefPubMedGoogle Scholar
  82. Skoglosa Y, Takei N, Lindholm D (1999) Distribution of pituitary adenylate cyclase activating polypeptide mRNA in the developing rat brain. Mol Brain Res 65:1–13CrossRefPubMedGoogle Scholar
  83. Szabadfi K, Atlasz T, Kiss P et al (2012) Mice deficient in pituitary adenylate cyclase activating polypeptide (PACAP) are more suceptible to retinal ischemic injury in vivo. Neurotox Res 21:41–48CrossRefPubMedGoogle Scholar
  84. Szabadfi K, Szabo A, Kiss P et al (2014) PACAP promotes neuron survival in early experimental diabetic retinopathy. Neurochem Int 64:84–91CrossRefPubMedGoogle Scholar
  85. Szabo A, Danyadil B, Bognar E et al (2012) Effect of PACAP on MAP kinases, Akt and cytokine expressions in rat retinal hypoperfusion. Neurosci Lett 523:93–98CrossRefPubMedGoogle Scholar
  86. Varga B, Szabadfi K, Kiss P et al (2011) PACAP improves functional outcome in excitotoxic retinal lesion: an electroretinographic study. J Mol Neurosci 43:44–50CrossRefPubMedGoogle Scholar
  87. Vaudry D, Gonzalez BJ, Basille M, Yon L, Fournier A, Vaudry H (2000) Pituitary adenylate cyclase-activating polypeptide and its receptors: from structure to functions. Pharmacol Rev 52:269–324PubMedGoogle Scholar
  88. Vaudry D, Falluel-Morel A, Bourgault S et al (2009) Pituitary adenylate cyclase-activating polypeptide and its receptors: 20 years after the discovery. Pharmacol Rev 61:283–357CrossRefPubMedGoogle Scholar
  89. Vrabec F (1975) Activated human retinal microglia under pathological conditions. Albrecht von Graefes Arch Klin Exp Ophthalmol 196:49–60CrossRefPubMedGoogle Scholar
  90. Wada Y, Nakamachi T, Endo K et al (2013) PACAP attenuates NMDA-induced retinal damage in association with modulation of the microglia/macrophage status into an acquired deactivation subtype. J Mol Neurosci 51:493–502CrossRefPubMedGoogle Scholar
  91. Walshe TE, Leach LL, D’Amore PA (2011) TGF-beta signaling is required for maintenance of retinal ganglion cell differentiation and survival. Neuroscience 189:123–131CrossRefPubMedPubMedCentralGoogle Scholar
  92. Wang XY, Alm P, Hokanson R (1995) Distribution and effects of pituitay adenylate cyclase-activating peptide in the rabbit eye. Neuroscience 69:297–308CrossRefPubMedGoogle Scholar
  93. Yamaji K, Yoshitomi T, Usui S (2005) Action of biologically active peptides on monkey iris sphincter and dilator muscles. Exp Eye Res 80:815–820CrossRefPubMedGoogle Scholar
  94. Yoshitomi T, Yamaji K, Ishikawa H, Ohnishi Y (2002) Effect of pituitary adenylate cyclase-activating peptide on isolated rabbit iris sphincter and dilator muscles. Invest Ophthalmol Vis Sci 43:780–783PubMedGoogle Scholar
  95. Zhang XY, Hayasaka S, Chi ZL, Cui HS, Hayasaka Y (2005) Effect of pituitary adenylate cyclase activating polypeptide (PACAP) on IL-6 and MCP-1 expression in human retinal pigment epithelial cell line. Curr Eye Res 30:1105–1111CrossRefPubMedGoogle Scholar

Copyright information

© Japanese Association of Anatomists 2016

Authors and Affiliations

  • Seiji Shioda
    • 1
    Email author
  • Fumiko Takenoya
    • 1
  • Nobuhiro Wada
    • 1
  • Takahiro Hirabayashi
    • 1
  • Tamotsu Seki
    • 2
  • Tomoya Nakamachi
    • 3
  1. 1.Global Research Center for Innovative Life ScienceHoshi University School of Pharmacy and Pharmaceutical SciencesTokyoJapan
  2. 2.Department of Anatomy and OphthalmologyShowa University School of MedicineTokyoJapan
  3. 3.Laboratory of Regulatory Biology, Graduate School of Science and EngineeringUniversity of ToyamaToyamaJapan

Personalised recommendations