Skip to main content

Advertisement

Log in

The distribution and function of aquaporins in the kidney: resolved and unresolved questions

  • Review Article
  • Published:
Anatomical Science International Aims and scope Submit manuscript

Abstract

The membrane water channel aquaporin (AQP) family is composed of 13 isoforms in mammals, eight of which are reportedly expressed in the kidney: AQP1, 2, 3, 4, 6, 7, 8, and 11. These isoforms are differentially expressed along the renal tubules and collecting ducts. AQP1 and 7 are distributed in the proximal tubules, whereas AQP2, 3, and 4 occur in the collecting duct system. They play important roles in the reabsorption of water and some solutes across the plasma membrane. In contrast to other aquaporins found in the kidney, AQP6, 8, and 11 are localized to the cytoplasm rather than to the apical or basolateral membranes. It is therefore doubtful that these isoforms are directly involved in water or solute reabsorption. AQP6 is localized in acid-secreting type A intercalated cells of the collecting duct. AQP8 has been found in the proximal tubule but its cellular location has not yet been defined by immunohistochemistry. AQP11 seems to be localized in the endoplasmic reticulum (ER) of proximal tubule cells. Interestingly, polycystic kidneys develop in AQP11-null mice. Many vacuole-like structures are seen in proximal tubule cells in kidneys of newborn AQP11-null mice. Subsequently, cysts are generated, and most of the mice die within a month due to severe renal failure. Although ER stress and impairment of polycystin-1, the product of the gene mutated in autosomal-dominant polycystic kidney disease, are possible causes of cystogenesis in AQP11-null mice, the exact mechanism of pathogenesis and the physiological function of AQP11 are yet to be resolved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ablimit A, Matsuzaki T, Tajika Y, Aoki T, Hagiwara H, Takata K (2006) Immunolocalization of water channel aquaporins in the nasal olfactory mucosa. Arch Histol Cytol 69:1–12

    Article  CAS  PubMed  Google Scholar 

  • Ablimit A, Aoki T, Matsuzaki T, Suzuki T, Hagiwara H, Takami S, Takata K (2008) Immunolocalization of water channel aquaporins in the vomeronasal organ of the rat: expression of AQP4 in neuronal sensory cells. Chem Senses 33:481–488

    Article  CAS  PubMed  Google Scholar 

  • Agre P, Preston GM, Smith BL, Jung JS, Raina S, Moon C, Guggino WB, Nielsen S (1993) Aquaporin CHIP: the archetypal molecular water channel. Am J Physiol Renal Physiol 265:F463–F476

    CAS  Google Scholar 

  • Atochina-Vasserman EN, Biktasova A, Abramova E, Cheng DS, Polosukhin VV, Tanjore H, Takahashi S, Sonoda H, Foye L, Venkov C, Ryzhov SV, Novitskiy S, Shlonimskaya N, Ikeda M, Blackwell TS, Lawson WE, Gow AJ, Harris RC, Dikov MM, Tchekneva EE (2013) Aquaporin 11 insufficiency modulates kidney susceptibility to oxidative stress. Am J Physiol Renal Physiol 304:F1295–F1307

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bakris GL, Fonseca VA, Sharma K, Wright EM (2009) Renal sodium-glucose transport: role in diabetes mellitus and potential clinical implications. Kidney Int 75:1272–1277

    Article  CAS  PubMed  Google Scholar 

  • Bastani B, Purcell H, Hemken P, Trigg D, Gluck S (1991) Expression and distribution of renal vacuolar proton-translocating adenosine triphosphatase in response to chronic acid and alkali loads in the rat. J Clin Invest 88:126–136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bienert GP, Møller ALB, Kristiansen KA, Schulz A, Møller IM, Schjoerring JK, Jahn TP (2007) Specific aquaporins facilitate the diffusion of hydrogen peroxide across membranes. J Biol Chem 282:1183–1192

    Article  CAS  PubMed  Google Scholar 

  • Boone M, Deen PMT (2008) Physiology and pathophysiology of the vasopressin-regulated renal water reabsorption. Pflugers Arch Eur J Physiol 456:1005–1024

    Article  CAS  Google Scholar 

  • Brown D (2003) The ins and outs of aquaporin-2 trafficking. Am J Physiol Renal Physiol 284:F893–F901

    Article  CAS  PubMed  Google Scholar 

  • Brown D, Hasler U, Nunes P, Bouley R, Lu HAJ (2008) Phosphorylation events and the modulation of aquaporin 2 cell surface expression. Curr Opin Nephrol Hypertens 17:491–498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Calamita G, Ferri D, Gena P, Liquori GE, Cavalier A, Thomas D, Svelto M (2005) The inner mitochondrial membrane has aquaporin-8 water channels and is highly permeable to water. J Biol Chem 280:17149–17153

    Article  CAS  PubMed  Google Scholar 

  • Castrop H, Schiessl IM (2014) Physiology and pathophysiology of the renal Na-K-2Cl cotransporter (NKCC2). Am J Physiol Renal Physiol 307:F991–F1002

    Article  CAS  PubMed  Google Scholar 

  • Chen Y, Rice W, Gu Z, Li J, Huang J, Brenner MB, Van Hoek A, Xiong J, Gundersen GG, Norman JC, Hsu VW, Fenton RA, Brown D, Lu HAJ (2012) Aquaporin 2 promotes cell migration and epithelial morphogenesis. J Am Soc Nephrol 23:1506–1517

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chou CL, Ma T, Yang B, Knepper MA, Verkman AS (1998) Fourfold reduction of water permeability in inner medullary collecting duct of aquaporin-4 knockout mice. Am J Physiol 274:C549–C554

    CAS  PubMed  Google Scholar 

  • Christensen BM, Wang W, Frøkiaer J, Nielsen S (2003) Axial heterogeneity in basolateral AQP2 localization in rat kidney: effect of vasopressin. Am J Physiol Renal Physiol 284:F701–F717

    Article  CAS  PubMed  Google Scholar 

  • Christov M, Alper S (2010) Tubular transport: core curriculum 2010. Am J Kidney Dis 56:1202–1217

    Article  PubMed  PubMed Central  Google Scholar 

  • Deen PMT, Verdijk MAJ, Knoers NVAM, Wieringa B, Monnens LAH, van Os CH, van Oost BA (1994) Requirement of human renal water channel aquaporin-2 for vasopressin-dependent concentration of urine. Science 264:92–95

    Article  CAS  PubMed  Google Scholar 

  • Elkjær ML, Nejsum LN, Gresz V, Kwon TH, Jensen UB, Frøkiær J, Nielsen S (2001) Immunolocalization of aquaporin-8 in rat kidney, gastrointestinal tract, testis, and airways. Am J Physiol 281:F1047–F1057

    Google Scholar 

  • Eto K, Noda Y, Horikawa S, Uchida S, Sasaki S (2010) Phosphorylation of aquaporin-2 regulates its water permeability. J Biol Chem 285:40777–40784

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fushimi K, Uchida S, Hara Y, Hirata Y, Marumo F, Sasaki S (1993) Cloning and expression of apical membrane water channel of rat kidney collecting tubule. Nature 361:549–552

    Article  CAS  PubMed  Google Scholar 

  • Gall Cornec-Le, Audrezet MP, Le Meur Y, Chen JM, Ferec C (2014) Genetics and pathogenesis of autosomal dominant polycystic kidney disease: 20 years on. Hum Mutat 35:1393–1406

    Article  CAS  Google Scholar 

  • Gamba G (2012) Regulation of the renal Na+-Cl cotransporter by phosphorylation and ubiquitylation. Am J Physiol Renal Physiol 303:F1573–F1583

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grantham JJ, Burg MB (1966) Effect of vasopressin and cyclic AMP on permeability of isolated collecting tubules. Am J Physiol 211:255–259

    CAS  PubMed  Google Scholar 

  • Harris PC (2009) 2008 Homer W. Smith Award: insights into the pathogenesis of polycystic kidney disease from gene discovery. J Am Soc Nephrol 20:1188–1198

    Article  CAS  PubMed  Google Scholar 

  • Hub JS, de Groot BL (2008) Mechanism of selectivity in aquaporins and aquaglyceroporins. Proc Natl Acad Sci USA 105:1198–1203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ikeda M, Matsuzaki T (2015) Regulation of aquaporins by vasopressin in the kidney. Vitam Horm 98:307–337

    Article  CAS  PubMed  Google Scholar 

  • Ikeda M, Andoo A, Shimono M, Takamatsu N, Taki A, Kanako M, Matsushita W, Uechi T, Matsuzaki T, Kenmochi N, Takata K, Sasaki S, Ito K, Ishibashi K (2011) The NPC motif of aquaporin-11, unlike the NPA motif of known aquaporins, is essential for full expression of molecular function. J Biol Chem 286:3342–3350

    Article  CAS  PubMed  Google Scholar 

  • Inoue Y, Sohara E, Kobayashi K, Chiga M, Rai T, Ishibashi K, Horie S, Su X, Zhou J, Sasaki S, Uchida S (2014) Aberrant glycosylation and localization of polycystin-1 cause polycystic kidney in an AQP11 knockout model. J Am Soc Nephrol 25:2789–2799

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ishibashi K, Kondo S, Hara S, Morishita Y (2011) The evolutionary aspects of aquaporin family. Am J Physiol 300:R566–R576

    CAS  Google Scholar 

  • Johansson I, Karlsson M, Shukla VK, Chrispeels MJ, Larsson C, Kjellbom P (1998) Water transport activity of the plasma membrane aquaporin PM28A is regulated by phosphorylation. Plant Cell 10:451–459

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jung JS, Preston GM, Smith BL, Guggino WB, Agre P (1994) Molecular structure of the water channel through aquaporin CHIP. The hourglass model. J Biol Chem 269:14648–14654

    CAS  PubMed  Google Scholar 

  • Katsura T, Verbavatz JM, Farinas J, Ma T, Ausiello D, Verkman AS, Brown D (1995) Constitutive and regulated membrane expression of aquaporin 1 and aquaporin 2 water channels in stably transfected LLC-PK1 epithelial cells. Proc Natl Acad Sci USA 92:7212–7216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Knepper MA, Hoffert JD, Packer RK, Fenton RA (2008) Urine concentration and dilution. In: Brenner BM (ed) Brenner and Rector’s the kidney. Elsevier, Philadelphia, pp 308–329

  • Kuwahara M, Fushimi K, Terada Y, Bai L, Marumo F, Sasaki S (1995) cAMP-dependent phosphorylation stimulates water permeability of aquaporin-collecting duct water channel protein expressed in Xenopus oocytes. J Biol Chem 270:10384–10387

  • Lee JW, Chou CL, Knepper MA (2015) Deep sequencing in microdissected renal tubules identifies nephron segment-specific transcriptomes. J Am Soc Nephrol 26:2669–2677

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ma T, Yang B, Gillespie A, Carlson EJ, Epstein CJ, Verkman AS (1997) Generation and phenotype of a transgenic knockout mouse lacking the mercurial-insensitive water channel aquaporin-4. J Clin Invest 100:957–962

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ma T, Yang B, Gillespie A, Carlson EJ, Epstein CJ, Verkman AS (1998) Severely impaired urinary concentrating ability in transgenic mice lacking aquaporin-1 water channels. J Biol Chem 273:4296–4299

    Article  CAS  PubMed  Google Scholar 

  • Ma T, Song Y, Yang B, Gillespie A, Carlson EJ, Epstein CJ, Verkman AS (2000) Nephrogenic diabetes insipidus in mice lacking aquaporin-3 water channels. Proc Natl Acad Sci USA 97:4386–4391

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matsuzaki T, Suzuki T, Koyama H, Tanaka S, Takata K (1999a) Aquaporin-5 (AQP5), a water channel protein, in the rat salivary and lacrimal glands: immunolocalization and effect of secretory stimulation. Cell Tissue Res 295:513–521

    Article  CAS  PubMed  Google Scholar 

  • Matsuzaki T, Suzuki T, Koyama H, Tanaka S, Takata K (1999b) Water channel protein AQP3 is present in epithelia exposed to the environment of possible water loss. J Histochem Cytochem 47:1275–1286

    Article  CAS  PubMed  Google Scholar 

  • Matsuzaki T, Tajika Y, Suzuki T, Aoki T, Hagiwara H, Takata K (2003) Immunolocalization of the water channel, aquaporin-5 (AQP5), in the rat digestive system. Arch Histol Cytol 66:307–315

    Article  CAS  PubMed  Google Scholar 

  • Matsuzaki T, Tajika Y, Ablimit A, Aoki T, Hagiwara H, Takata K (2004) Aquaporins in the digestive system. Med Electron Microsc 37:71–80

    Article  CAS  PubMed  Google Scholar 

  • Matsuzaki T, Machida N, Tajika Y, Ablimit A, Suzuki T, Aoki T, Hagiwara H, Takata K (2005) Expression and immunolocalization of water-channel aquaporins in the rat and mouse mammary gland. Histochem Cell Biol 123:501–512

    Article  CAS  PubMed  Google Scholar 

  • Matsuzaki T, Ablimit A, Suzuki T, Aoki T, Hagiwara H, Takata K (2006) Changes of aquaporin 5-distribution during release and reaccumulation of secretory granules in isoproterenol-treated mouse parotid gland. J Electron Microsc 55:183–189

    Article  CAS  Google Scholar 

  • Matsuzaki T, Hata H, Ozawa H (2009) Takata K (2009) Immunohistochemical localization of the aquaporins AQP1, AQP3, AQP4, and AQP5 in the mouse respiratory system. Acta Histochem Cytochem 42:159–169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matsuzaki T, Inahata Y, Sawai N, Yang CY, Kobayashi M, Takata K, Ozawa H (2011) Immunohistochemical localization of the water channels AQP4 and AQP5 in the rat pituitary gland. Acta Histochem Cytochem 44:259–266

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moeller HB, Fenton RA (2012) Cell biology of vasopressin-regulated aquaporin-2 trafficking. Pflugers Arch Eur J Physiol 464:133–144

    Article  CAS  Google Scholar 

  • Moeller HB, Olesen ETB, Fenton RA (2011) Regulation of the water channel aquaporin-2 by posttranslational modification. Am J Physiol Renal Physiol 300:F1062–F1073

    Article  CAS  PubMed  Google Scholar 

  • Moeller HB, Rittig S, Fenton RA (2013) Nephrogenic diabetes insipidus: essential insights into the molecular background and potential therapies for treatment. Endocr Rev 34:278–301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moeller HB, Aroankins TS, Slengerik-Hansen J, Pisitkun T, Fenton RA (2014) Phosphorylation and ubiquitylation are opposing processes that regulate endocytosis of the water channel aquaporin-2. J Cell Sci 127:3174–3183

    Article  CAS  PubMed  Google Scholar 

  • Molinas SM, Trumper L, Marinelli R (2012) Mitochondrial aquaporin-8 in renal proximal tubule cells: evidence for a role in the response to metabolic acidosis. Am J Physiol 303:F458–F466

    CAS  Google Scholar 

  • Morishita Y, Matsuzaki T, Hara-Chikuma M, Andoo A, Shimono M, Matsuki A, Kobayashi K, Ikeda M, Yamamoto T, Verkman A, Kusano E, Ookawara S, Takata K, Sasaki S, Ishibashi K (2005) Disruption of aquaporin-11 produces polycystic kidneys following vacuolization of the proximal tubule. Mol Cell Biol 25:7770–7779

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Murata K, Mitsuoka K, Hirai T, Walz T, Agre P, Heymann JB, Engel A, Fujiyoshi Y (2000) Structural determinants of water permeation through aquaporin-1. Nature 407:599–605

    Article  CAS  PubMed  Google Scholar 

  • Nejsum LN, Elkjær ML, Hager H, Frøkiær J, Kwon TH, Nielsen S (2000) Localization of aquaporin-7 in rat and mouse kidney using RT-PCR, immunoblotting, and immunocytochemistry. Biochem Biophys Res Commun 277:164–170

    Article  CAS  PubMed  Google Scholar 

  • Nielsen S, Digiovanni SR, Christensen EI, Knepper MA, Harris HW (1993a) Cellular and subcellular immunolocalization of vasopressin-regulated water channel in rat kidney. Proc Natl Acad Sci USA 90:11663–11667

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nielsen S, Smith BL, Christensen EI, Knepper MA, Agre P (1993b) CHIP28 water channels are localized in constitutively water-permeable segments of the nephron. J Cell Biol 120:371–383

    Article  CAS  PubMed  Google Scholar 

  • Nielsen S, Pallone T, Smith BL, Christensen EI, Agre P, Maunsbach AB (1995) Aquaporin-1 water channels in short and long loop descending thin limbs and in descending vasa recta in rat kidney. Am J Physiol 268:F1023–F1037

    CAS  PubMed  Google Scholar 

  • Noda Y, Sasaki S (2006) Regulation of aquaporin-2 trafficking and its binding protein complex. Biochimi Biophys Acta 1758:1117–1125

    Article  CAS  Google Scholar 

  • Ohshiro K, Yaoita E, Yoshida Y, Fujinaka H, Matsuki A, Kamiie J, Kovalenko P, Yamamoto T (2001) Expression and immunolocalization of AQP6 in intercalated cells of the rat kidney collecting duct. Arch Histol Cytol 3:329–338

    Article  Google Scholar 

  • Okada S, Misaka T, Tanaka Y, Matsumoto I, Ishibashi K, Sasaki S, Abe K (2008) Aquaporin-11 knockout mice and polycystic kidney disease animals share a common mechanism of cyst formation. FASEB J 22:3672–3684

    Article  CAS  PubMed  Google Scholar 

  • Pannabecker TL (2012) Structure and function of the thin limbs of the loop of Henle. Compr Physiol 2:2063–2086

    PubMed  Google Scholar 

  • Pannabecker TL, Dantzler WH (2006) Three-dimensional architecture of inner medullary vasa recta. Am J Physiol Renal Physiol 290:F1355–F1366

  • Pannabecker TL, Dantzler WH, Layton HE, Layton AT (2008) Role of three-dimensional architecture in the urine concentrating mechanism of the rat renal inner medulla. Am J Physiol 295:F1271–F1285

    Article  CAS  Google Scholar 

  • Paul BM, Vanden Heuvel GB (2014) Kidney: polycystic kidney disease. WIREs Dev Biol 3:465–487

    Article  CAS  Google Scholar 

  • Preston GM, Agre P (1991) Isolation of the cDNA for erythrocyte integral membrane protein of 28 kilodaltons: member of an ancient channel family. Proc Natl Acad Sci USA 88:11110–11114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Preston GM, Carroll TP, Guggino WB, Agre P (1992) Appearance of water channels in Xenopus oocytes expressing red cell CHIP28 protein. Science 256:385–387

  • Preston GM, Smith BL, Zeidel ML, Moulds JJ, Agre P (1994) Mutations in aquaporin-1 in phenotypically normal humans without functional CHIP water channels. Science 265:1585–1587

    Article  CAS  PubMed  Google Scholar 

  • Promeneur D, Kwon TH, Yasui M, Kim GH, Frøkiær J, Knepper MA, Agre P, Nielsen S (2000) Regulation of AQP6 mRNA and protein expression in rats in response to altered acid-base or water balance. Am J Physiol 279:F1014–F1026

    CAS  Google Scholar 

  • Rinchik EM, Carpenter DA (1999) N-ethyl-N-nitrosourea mutagenesis of a 6- to 11-cM subregion of the Fah-Hbb interval of mouse chromosome 7: completed testing of 4557 gametes and deletion mapping and complementation analysis of 31 mutations. Genetics 152:373–383

  • Rojek A, Fuchtbauer EM, Kwon TH, Frøkiær J, Nielsen S (2006) Severe urinary concentrating defect in renal collecting duct-selective AQP2 conditional-knockout mice. Proc Natl Acad Sci USA 103:6037–6042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sachdeva R, Singh B (2014) Insights into structural mechanisms of gating induced regulation of aquaporins. Prog Biophys Mol Biol 114:69–79

    Article  CAS  PubMed  Google Scholar 

  • Samikkannu T, Thomas JJ, Bhat GJ, Wittman V, Thekkumkara TJ (2006) Acute effect of high glucose on long-term cell growth: a role for transient glucose increase in proximal tubule cell injury. Am J Physiol Renal Physiol 291:F162–F175

    Article  CAS  PubMed  Google Scholar 

  • Sands JM, Layton HE (2014) Advances in understanding the urine-concentrating mechanism. Annu Rev Physiol 76:387–409

    Article  CAS  PubMed  Google Scholar 

  • Sasaki S, Yui N, Noda Y (2014) Actin directly interacts with different membrane channel proteins and influences channel activities: AQP2 as a model. Biochimi Biophys Acta 1838:514–520

    Article  CAS  Google Scholar 

  • Sohara E, Rai T, Miyazaki J, Verkman AS, Sasaki S, Uchida S (2005) Defective water and glycerol transport in the proximal tubules of AQP7 knockout mice. Am J Physiol 289:F1195–F1200

    CAS  Google Scholar 

  • Sohara E, Rai T, Sasaki S, Uchida S (2006) Physiological roles of AQP7 in the kidney: lessons from AQP7 knockout mice. Biochim Biophys Acta 1758:1106–1110

    Article  CAS  PubMed  Google Scholar 

  • Soria LR, Fanelli E, Altamura N, Svelto M, Marinelli RA, Calamita G (2010) Aquaporin-8-facilitated mitochondrial ammonia transport. Biochem Biophys Res Commun 393:217–221

    Article  CAS  PubMed  Google Scholar 

  • Stanton BA, Koeppen BM (2004) Solute and water transport along the nephron: tubular function. In: Bern RM, Levy MN, Koeppen BM, Stanton BA (eds) Physiology. Elsevier Mosby, St. Louis, pp 643–658

    Google Scholar 

  • Susa T, Sawai N, Aoki T, Iizuka-Kogo A, Kogo H, Negishi A, Yokoo S, Takata K, Matsuzaki T (2013) Effects of repeated administration of pilocarpine and isoproterenol on aquaporin-5 expression in rat salivary glands. Acta Histochem Cytochem 46:187–197

    Article  PubMed  PubMed Central  Google Scholar 

  • Tajika Y, Matsuzaki T, Suzuki T, Aoki T, Hagiwara H, Tanaka S, Kominami E, Takata K (2002) Immunohistochemical characterization of the intracellular pool of water channel aquaporin-2 in the rat kidney. Anat Sci Int 77:189–195

    Article  PubMed  Google Scholar 

  • Tajika Y, Matsuzaki T, Suzuki T, Aoki T, Hagiwara H, Kuwahara M, Sasaki S, Takata K (2004) Aquaporin-2 is retrieved to the apical storage compartment via early endosomes and phosphatidylinositol 3-kinase-dependent pathway. Endocrinology 145:4375–4383

    Article  CAS  PubMed  Google Scholar 

  • Tajika Y, Matsuzaki T, Suzuki T, Ablimit A, Aoki T, Hagiwara H, Kuwahara M, Sasaki S, Takata K (2005) Differential regulation of AQP2 trafficking in endosomes by microtubules and actin filaments. Histochem Cell Biol 124:1–12

    Article  CAS  PubMed  Google Scholar 

  • Takahashi S, Muta K, Sonoda H, Kato A, Abdeen A, Ikeda M (2014) The role of cysteine 227 in subcellular localization, water permeability, and multimerization of aquaporin-11. FEBS Open Bio 4:315–320

  • Takata K, Matsuzaki T, Tajika Y (2004) Aquaporins: water channel proteins of the cell membrane. Prog Histochem Cytochem 39:1–84

    Article  CAS  PubMed  Google Scholar 

  • Takata K, Matsuzaki T, Tajika Y, Ablimit A, Hasegawa T (2008) Localization and trafficking of aquaporin 2 in the kidney. Histochem Cell Biol 130:197–209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tchekneva EE, Khuchua Z, Davis LS, Kadkina V, Dunn SR, Bachman S, Ishibashi K, Rinchik EM, Harris RC, Dikov MM, Breyer MD (2008) Single amino acid substitution in aquaporin 11 causes renal failure. J Am Soc Nephrol 19:1955–1964

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Terris J, Ecelbarger CA, Marples D, Knepper MA, Nielsen S (1995) Distribution of aquaporin-4 water channel expression within rat kidney. Am J Physiol 269:F775–F785

    CAS  PubMed  Google Scholar 

  • van Hoek AN, Ma T, Yang B, Verkman AS, Brown D (2000) Aquaporin-4 is expressed in basolateral membranes of proximal tubule S3 segments in mouse kidney. Am J Physiol 278:F310–F316

    Google Scholar 

  • Viadiu H, Gonen T, Walz T (2007) Projection map of aquaporin-9 at 7 Å resolution. J Mol Biol 367:80–88

    Article  CAS  PubMed  Google Scholar 

  • Wade JB, Stetson DL, Lewis SA (1981) ADH action: evidence for a membrane shuttle mechanism. Ann NY Acad Sci 372:106–117

    Article  CAS  PubMed  Google Scholar 

  • Yakata K, Tani K, Fujiyoshi Y (2011) Water permeability and characterization of aquaporin-11. J Struct Biol 174:315–320

    Article  CAS  PubMed  Google Scholar 

  • Yamamoto T, Sasaki S, Fushimi K, Ishibashi K, Yaoita E, Kawasaki K, Marumo F, Kihara I (1995) Vasopressin increases AQP-CD water channel in apical membrane of collecting duct cells in Brattleboro rats. Am J Physiol Cell Physiol 268:C1546–C1551

    CAS  Google Scholar 

  • Yang B, Song Y, Zhao D, Verkman AS (2005) Phenotype analysis of aquaporin-8 null mice. Am J Physiol 288:C1161–C1170

    Article  CAS  Google Scholar 

  • Yang B, Zhao D, Verkman AS (2006) Evidence against functionally significant aquaporin expression in mitochondria. J Biol Chem 281:16202–16206

    Article  CAS  PubMed  Google Scholar 

  • Yasui M, Hazama A, Kwon TH, Nielsen S, Guggino WB, Agre P (1999a) Rapid gating and anion permeability of an intracellular aquaporin. Nature 402:184–187

    Article  CAS  PubMed  Google Scholar 

  • Yasui M, Kwon TH, Knepper MA, Nielsen S, Agre P (1999b) Aquaporin-6: an intracellular vesicle water channel protein in renal epithelia. Proc Natl Acad Sci USA 96:5808–5813

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yeung CH, Cooper TG (2010) Aquaporin AQP11 in the testis: molecular identity and association with the processing of residual cytoplasm of elongated spermatids. Reproduction 139:209–216

    Article  CAS  PubMed  Google Scholar 

  • Yui N, Lu HAJ, Chen Y, Nomura N, Bouley R, Brown D (2013) Basolateral targeting and microtubule-dependent transcytosis of the aquaporin-2 water channel. Am J Physiol Cell Physiol 304:C38–C48

    Article  CAS  PubMed  Google Scholar 

  • Zhai XY, Fenton RA, Andreasen A, Thomsen JS, Christensen EI (2007) Aquaporin-1 is not expressed in descending thin limbs of short-loop nephrons. J Am Soc Nephrol 18:2937–2944

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by grants 22790191, 26460267, and 25463068 from JSPS KAKENHI. We also thank Yukiko Tajika-Takahashi, Mutsumi Shimoda, and the staff of the Bioresource Center of Gunma University Graduate School of Medicine for their assistance.

Conflict of interest

The authors declare that they have no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toshiyuki Matsuzaki.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Matsuzaki, T., Yaguchi, T., Shimizu, K. et al. The distribution and function of aquaporins in the kidney: resolved and unresolved questions. Anat Sci Int 92, 187–199 (2017). https://doi.org/10.1007/s12565-016-0325-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12565-016-0325-2

Keywords

Navigation