Anatomical Science International

, Volume 90, Issue 1, pp 7–21 | Cite as

Compartmental organization of synaptic inputs to parvalbumin-expressing GABAergic neurons in mouse primary somatosensory cortex

Review Article

Abstract

Parvalbumin (PV)-positive fast-spiking cells in the neocortex are known to generate gamma oscillations by mutual chemical and electrical connections. Recent findings suggest that this rhythm might be responsible for higher-order brain functions, and related to psychiatric disorders. To elucidate the precise structural rules of the connections of PV neurons, we first produced genetic tools. Using a lentiviral expression system, we developed neuron-specific promoters and a new reporter protein that labels the somatodendritic membrane of neurons. We applied the reporter protein to the generation of transgenic mice, and succeeded in visualizing the dendrites and cell bodies of PV neurons efficiently. Then we analyzed excitatory and inhibitory inputs to PV neurons in the primary somatosensory cortex using the mice. Corticocortical glutamatergic inputs were more frequently found on the distal dendrites than on the soma, whereas thalamocortical inputs did not differ between the proximal and distal portions. Corticocortical inhibitory inputs were more densely distributed on the soma than on the dendrites. We further investigated which types of neocortical GABAergic neurons preferred the PV soma over their dendrites. We revealed that the somatic and dendritic compartments principally received GABAergic inputs from vasoactive intestinal polypeptide (VIP)-positive and PV neurons, respectively. This compartmental organization suggests that PV neurons communicate with each other mainly via the dendrites, and that their activity is effectively controlled by the somatic inputs of VIP neurons. These findings provide new insights into the neuronal circuits involving PV neurons, and contribute to a better understanding of brain functions and mental disorders.

Keywords

Connections Fast-spiking Parvalbumin Primary somatosensory cortex Transgenic 

References

  1. Amendola M, Venneri MA, Biffi A, Vigna E, Naldini L (2005) Coordinate dual-gene transgenesis by lentiviral vectors carrying synthetic bidirectional promoters. Nat Biotechnol 23(1):108–116PubMedGoogle Scholar
  2. Andrasfalvy BK, Mody I (2006) Differences between the scaling of miniature IPSCs and EPSCs recorded in the dendrites of CA1 mouse pyramidal neurons. J Physiol 576(1):191–196PubMedCentralPubMedGoogle Scholar
  3. Ascoli GA, Alonso-Nanclares L, Anderson SA et al (2008) Petilla terminology: nomenclature of features of GABAergic interneurons of the cerebral cortex. Nat Rev Neurosci 9(7):557–568PubMedGoogle Scholar
  4. Bartos M, Vida I, Jonas P (2007) Synaptic mechanisms of synchronized gamma oscillations in inhibitory interneuron networks. Nat Rev Neurosci 8(1):45–56PubMedGoogle Scholar
  5. Bayraktar T, Staiger JF, Acsady L, Cozzari C, Freund TF, Zilles K (1997) Co-localization of vasoactive intestinal polypeptide, gamma-aminobutyric acid and choline acetyltransferase in neocortical interneurons of the adult rat. Brain Res 757(2):209–217PubMedGoogle Scholar
  6. Blatow M, Rozov A, Katona I et al (2003) A novel network of multipolar bursting interneurons generates theta frequency oscillations in neocortex. Neuron 38(5):805–817PubMedGoogle Scholar
  7. Burkhalter A (2008) Many specialists for suppressing cortical excitation. Front Neurosci 2(2):155–167PubMedCentralPubMedGoogle Scholar
  8. Cardin JA, Carlen M, Meletis K et al (2009) Driving fast-spiking cells induces gamma rhythm and controls sensory responses. Nature 459(7247):663–667PubMedCentralPubMedGoogle Scholar
  9. Caroni P (1997) Overexpression of growth-associated proteins in the neurons of adult transgenic mice. J Neurosci Methods 71(1):3–9PubMedGoogle Scholar
  10. Cauli B, Audinat E, Lambolez B et al (1997) Molecular and physiological diversity of cortical nonpyramidal cells. J Neurosci 17(10):3894–3906PubMedGoogle Scholar
  11. Cauli B, Porter JT, Tsuzuki K et al (2000) Classification of fusiform neocortical interneurons based on unsupervised clustering. Proc Natl Acad Sci USA 97(11):6144–6149PubMedCentralPubMedGoogle Scholar
  12. Cauli B, Zhou X, Tricoire L, Toussay X, Staiger JF (2014) Revisiting enigmatic cortical calretinin-expressing interneurons. Front Neuroanat 8:52PubMedCentralPubMedGoogle Scholar
  13. Chaudhry FA, Reimer RJ, Bellocchio EE et al (1998) The vesicular GABA transporter, VGAT, localizes to synaptic vesicles in sets of glycinergic as well as GABAergic neurons. J Neurosci 18(23):9733–9750PubMedGoogle Scholar
  14. Connor JR, Peters A (1984) Vasoactive intestinal polypeptide-immunoreactive neurons in rat visual cortex. Neuroscience 12(4):1027–1044PubMedGoogle Scholar
  15. Cots D, Bosch A, Chillón M (2013) Helper dependent adenovirus vectors: progress and future prospects. Curr Gene Ther 13(5):370–381PubMedGoogle Scholar
  16. Cronin J, Zhang XY, Reiser J (2005) Altering the tropism of lentiviral vectors through pseudotyping. Curr Gene Ther 5(4):387–398PubMedCentralPubMedGoogle Scholar
  17. Defelipe J (1997) Types of neurons, synaptic connections and chemical characteristics of cells immunoreactive for calbindin-D28 K, parvalbumin and calretinin in the neocortex. J Chem Neuroanat 14(1):1–19PubMedGoogle Scholar
  18. Demeulemeester H, Vandesande F, Orban GA, Brandon C, Vanderhaeghen JJ (1988) Heterogeneity of GABAergic cells in cat visual cortex. J Neurosci 8(3):988–1000PubMedGoogle Scholar
  19. Dittgen T, Nimmerjahn A, Komai S et al (2004) Lentivirus-based genetic manipulations of cortical neurons and their optical and electrophysiological monitoring in vivo. Proc Natl Acad Sci USA 101(52):18206–18211PubMedCentralPubMedGoogle Scholar
  20. Dryga SA, Dryga OA, Schlesinger S (1997) Identification of mutations in a Sindbis virus variant able to establish persistent infection in BHK cells: the importance of a mutation in the nsP2 gene. Virology 228(1):74–83PubMedGoogle Scholar
  21. Fechner H, Haack A, Wang H et al (1999) Expression of coxsackie adenovirus receptor and alphav-integrin does not correlate with adenovector targeting in vivo indicating anatomical vector barriers. Gene Ther 6(9):1520–1535PubMedGoogle Scholar
  22. Feng G, Mellor RH, Bernstein M et al (2000) Imaging neuronal subsets in transgenic mice expressing multiple spectral variants of GFP. Neuron 28(1):41–51PubMedGoogle Scholar
  23. Forss-Petter S, Danielson PE, Catsicas S et al (1990) Transgenic mice expressing beta-galactosidase in mature neurons under neuron-specific enolase promoter control. Neuron 5(2):187–197PubMedGoogle Scholar
  24. Fremeau RT Jr, Troyer MD, Pahner I et al (2001) The expression of vesicular glutamate transporters defines two classes of excitatory synapse. Neuron 31(2):247–260PubMedGoogle Scholar
  25. Freund TF, Katona I (2007) Perisomatic inhibition. Neuron 56(1):33–42PubMedGoogle Scholar
  26. Fritschy JM, Harvey RJ, Schwarz G (2008) Gephyrin: where do we stand, where do we go? Trends Neurosci 31(5):257–264PubMedGoogle Scholar
  27. Fujiyama F, Furuta T, Kaneko T (2001) Immunocytochemical localization of candidates for vesicular glutamate transporters in the rat cerebral cortex. J Comp Neurol 435(3):379–387PubMedGoogle Scholar
  28. Fujiyama F, Hioki H, Tomioka R et al (2003) Changes of immunocytochemical localization of vesicular glutamate transporters in the rat visual system after the retinofugal denervation. J Comp Neurol 465(2):234–249PubMedGoogle Scholar
  29. Fukuda T, Kosaka T (2003) Ultrastructural study of gap junctions between dendrites of parvalbumin-containing GABAergic neurons in various neocortical areas of the adult rat. Neuroscience 120(1):5–20PubMedGoogle Scholar
  30. Fukuda T, Kosaka T, Singer W, Galuske RA (2006) Gap junctions among dendrites of cortical GABAergic neurons establish a dense and widespread intercolumnar network. J Neurosci 26(13):3434–3443PubMedGoogle Scholar
  31. Furuta T, Tomioka R, Taki K, Nakamura K, Tamamaki N, Kaneko T (2001) In vivo transduction of central neurons using recombinant Sindbis virus: golgi-like labeling of dendrites and axons with membrane-targeted fluorescent proteins. J Histochem Cytochem 49(12):1497–1508PubMedGoogle Scholar
  32. Furuta T, Timofeeva E, Nakamura K et al (2008) Inhibitory gating of vibrissal inputs in the brainstem. J Neurosci 28(8):1789–1797PubMedGoogle Scholar
  33. Galarreta M, Hestrin S (1999) A network of fast-spiking cells in the neocortex connected by electrical synapses. Nature 402(6757):72–75PubMedGoogle Scholar
  34. Galarreta M, Hestrin S (2001) Spike transmission and synchrony detection in networks of GABAergic interneurons. Science 292(5525):2295–2299PubMedGoogle Scholar
  35. Galarreta M, Hestrin S (2002) Electrical and chemical synapses among parvalbumin fast-spiking GABAergic interneurons in adult mouse neocortex. Proc Natl Acad Sci USA 99(19):12438–12443PubMedCentralPubMedGoogle Scholar
  36. Gascon S, Paez-Gomez JA, Diaz-Guerra M, Scheiffele P, Scholl FG (2008) Dual-promoter lentiviral vectors for constitutive and regulated gene expression in neurons. J Neurosci Methods 168(1):104–112PubMedGoogle Scholar
  37. Gibson JR, Beierlein M, Connors BW (1999) Two networks of electrically coupled inhibitory neurons in neocortex. Nature 402(6757):75–79PubMedGoogle Scholar
  38. Gloster A, Wu W, Speelman A et al (1994) The T alpha 1 alpha-tubulin promoter specifies gene expression as a function of neuronal growth and regeneration in transgenic mice. J Neurosci 14(12):7319–7330PubMedGoogle Scholar
  39. Gonchar Y, Burkhalter A (1997) Three distinct families of GABAergic neurons in rat visual cortex. Cereb Cortex 7(4):347–358PubMedGoogle Scholar
  40. Gonchar Y, Wang Q, Burkhalter A (2007) Multiple distinct subtypes of GABAergic neurons in mouse visual cortex identified by triple immunostaining. Front Neuroanat 1:3PubMedCentralPubMedGoogle Scholar
  41. Gupta A, Wang Y, Markram H (2000) Organizing principles for a diversity of GABAergic interneurons and synapses in the neocortex. Science 287(5451):273–278PubMedGoogle Scholar
  42. Herzog E, Bellenchi GC, Gras C et al (2001) The existence of a second vesicular glutamate transporter specifies subpopulations of glutamatergic neurons. J Neurosci 21(22):RC181Google Scholar
  43. Hestrin S, Galarreta M (2005) Electrical synapses define networks of neocortical GABAergic neurons. Trends Neurosci 28(6):304–309PubMedGoogle Scholar
  44. Hioki H, Fujiyama F, Taki K et al (2003) Differential distribution of vesicular glutamate transporters in the rat cerebellar cortex. Neuroscience 117(1):1–6PubMedGoogle Scholar
  45. Hioki H, Fujiyama F, Nakamura K, Wu SX, Matsuda W, Kaneko T (2004) Chemically specific circuit composed of vesicular glutamate transporter 3- and preprotachykinin B-producing interneurons in the rat neocortex. Cereb Cortex 14(11):1266–1275PubMedGoogle Scholar
  46. Hioki H, Kameda H, Nakamura H et al (2007) Efficient gene transduction of neurons by lentivirus with enhanced neuron-specific promoters. Gene Ther 14(11):872–882PubMedGoogle Scholar
  47. Hioki H, Kuramoto E, Konno M et al (2009) High-level transgene expression in neurons by lentivirus with Tet-Off system. Neurosci Res 63(2):149–154PubMedGoogle Scholar
  48. Hioki H, Nakamura H, Ma YF et al (2010) Vesicular glutamate transporter 3-expressing nonserotonergic projection neurons constitute a subregion in the rat midbrain raphe nuclei. J Comp Neurol 518(5):668–686PubMedGoogle Scholar
  49. Hioki H, Okamoto S, Konno M et al (2013) Cell type-specific inhibitory inputs to dendritic and somatic compartments of parvalbumin-expressing neocortical interneuron. J Neurosci 33(2):544–555PubMedGoogle Scholar
  50. Hu H, Gan J, Jonas P (2014) Interneurons. Fast-spiking, parvalbumin+ GABAergic interneurons: from cellular design to microcircuit function. Science 345(6196):1255263PubMedGoogle Scholar
  51. Isomura Y, Harukuni R, Takekawa T, Aizawa H, Fukai T (2009) Microcircuitry coordination of cortical motor information in self-initiation of voluntary movements. Nat Neurosci 12(12):1586–1593PubMedGoogle Scholar
  52. Ito T, Hioki H, Nakamura K et al (2007) Gamma-aminobutyric acid-containing sympathetic preganglionic neurons in rat thoracic spinal cord send their axons to the superior cervical ganglion. J Comp Neurol 502(1):113–125PubMedGoogle Scholar
  53. Jinno S, Kosaka T (2004) Parvalbumin is expressed in glutamatergic and GABAergic corticostriatal pathway in mice. J Comp Neurol 477(2):188–201PubMedGoogle Scholar
  54. Johnson JK, Casagrande VA (1995) Distribution of calcium-binding proteins within the parallel visual pathways of a primate (Galago crassicaudatus). J Comp Neurol 356(2):238–260Google Scholar
  55. Kameda H, Furuta T, Matsuda W et al (2008) Targeting green fluorescent protein to dendritic membrane in central neurons. Neurosci Res 61(1):79–91PubMedGoogle Scholar
  56. Kameda H, Hioki H, Tanaka YH et al (2012) Parvalbumin-producing cortical interneurons receive inhibitory inputs on proximal portions and cortical excitatory inputs on distal dendrites. Eur J Neurosci 35(6):838–854PubMedGoogle Scholar
  57. Kaneko T, Fujiyama F (2002) Complementary distribution of vesicular glutamate transporters in the central nervous system. Neurosci Res 42(4):243–250PubMedGoogle Scholar
  58. Kaneko T, Murashima M, Lee T, Mizuno N (1998) Characterization of neocortical non-pyramidal neurons expressing preprotachykinins A and B: a double immunofluorescence study in the rat. Neuroscience 86(3):765–781PubMedGoogle Scholar
  59. Kaneko T, Fujiyama F, Hioki H (2002) Immunohistochemical localization of candidates for vesicular glutamate transporters in the rat brain. J Comp Neurol 444(1):39–62PubMedGoogle Scholar
  60. Karube F, Kubota Y, Kawaguchi Y (2004) Axon branching and synaptic bouton phenotypes in GABAergic nonpyramidal cell subtypes. J Neurosci 24(12):2853–2865PubMedGoogle Scholar
  61. Kawaguchi Y (1995) Physiological subgroups of nonpyramidal cells with specific morphological characteristics in layer II/III of rat frontal cortex. J Neurosci 15(4):2638–2655PubMedGoogle Scholar
  62. Kawaguchi Y, Kondo S (2002) Parvalbumin, somatostatin and cholecystokinin as chemical markers for specific GABAergic interneuron types in the rat frontal cortex. J Neurocytol 31(3–5):277–287PubMedGoogle Scholar
  63. Kawaguchi Y, Kubota Y (1993) Correlation of physiological subgroupings of nonpyramidal cells with parvalbumin- and calbindin D28 k-immunoreactive neurons in layer V of rat frontal cortex. J Neurophysiol 70(1):387–396PubMedGoogle Scholar
  64. Kawaguchi Y, Kubota Y (1996) Physiological and morphological identification of somatostatin- or vasoactive intestinal polypeptide-containing cells among GABAergic cell subtypes in rat frontal cortex. J Neurosci 16(8):2701–2715PubMedGoogle Scholar
  65. Kawaguchi Y, Kubota Y (1997) GABAergic cell subtypes and their synaptic connections in rat frontal cortex. Cereb Cortex 7(6):476–486PubMedGoogle Scholar
  66. Kawaguchi Y, Kubota Y (1998) Neurochemical features and synaptic connections of large physiologically-identified GABAergic cells in the rat frontal cortex. Neuroscience 85(3):677–701PubMedGoogle Scholar
  67. Kinoshita M, Matsui R, Kato S et al (2012) Genetic dissection of the circuit for hand dexterity in primates. Nature 487(7406):235–238PubMedGoogle Scholar
  68. Kubota Y (2014) Untangling GABAergic wiring in the cortical microcircuit. Curr Opin Neurobiol 26:7–14PubMedGoogle Scholar
  69. Kubota Y, Kawaguchi Y (1997) Two distinct subgroups of cholecystokinin-immunoreactive cortical interneurons. Brain Res 752(1–2):175–183PubMedGoogle Scholar
  70. Kubota Y, Hattori R, Yui Y (1994) Three distinct subpopulations of GABAergic neurons in rat frontal agranular cortex. Brain Res 649(1–2):159–173PubMedGoogle Scholar
  71. Kubota Y, Shigematsu N, Karube F et al (2011) Selective coexpression of multiple chemical markers defines discrete populations of neocortical GABAergic neurons. Cereb Cortex 21(8):1803–1817PubMedGoogle Scholar
  72. Kuramoto E, Furuta T, Nakamura KC, Unzai T, Hioki H, Kaneko T (2009) Two types of thalamocortical projections from the motor thalamic nuclei of the rat: a single neuron-tracing study using viral vectors. Cereb Cortex 19(9):2065–2077PubMedGoogle Scholar
  73. Kuramoto E, Ohno S, Furuta T et al (2013) Ventral medial nucleus neurons send thalamocortical afferents more widely and more preferentially to layer 1 than neurons of the ventral anterior-ventral lateral nuclear complex in the rat. Cereb Cortex. doi:10.1093/cercor/bht216
  74. Lee S, Kruglikov I, Huang ZJ, Fishell G, Rudy B (2013) A disinhibitory circuit mediates motor integration in the somatosensory cortex. Nat Neurosci 16(11):1662–1670PubMedCentralPubMedGoogle Scholar
  75. Letzkus JJ, Wolff SB, Meyer EM et al (2011) A disinhibitory microcircuit for associative fear learning in the auditory cortex. Nature 480(7377):331–335PubMedGoogle Scholar
  76. Lewis DA, Hashimoto T, Volk DW (2005) Cortical inhibitory neurons and schizophrenia. Nat Rev Neurosci 6(4):312–324PubMedGoogle Scholar
  77. Lewis DA, Curley AA, Glausier JR, Volk DW (2012) Cortical parvalbumin interneurons and cognitive dysfunction in schizophrenia. Trends Neurosci 35(1):57–67PubMedCentralPubMedGoogle Scholar
  78. Li L, Suzuki T, Mori N, Greengard P (1993) Identification of a functional silencer element involved in neuron-specific expression of the synapsin I gene. Proc Natl Acad Sci USA 90(4):1460–1464PubMedCentralPubMedGoogle Scholar
  79. Ma Y, Hioki H, Konno M et al (2011) Expression of gap junction protein connexin36 in multiple subtypes of GABAergic neurons in adult rat somatosensory cortex. Cereb Cortex 21(11):2639–2649PubMedGoogle Scholar
  80. Markram H, Toledo-Rodriguez M, Wang Y, Gupta A, Silberberg G, Wu C (2004) Interneurons of the neocortical inhibitory system. Nat Rev Neurosci 5(10):793–807PubMedGoogle Scholar
  81. Matsuda W, Furuta T, Nakamura KC et al (2009) Single nigrostriatal dopaminergic neurons form widely spread and highly dense axonal arborizations in the neostriatum. J Neurosci 29(2):444–453PubMedGoogle Scholar
  82. Matsuzaki Y, Oue M, Hirai H (2014) Generation of a neurodegenerative disease mouse model using lentiviral vectors carrying an enhanced synapsin I promoter. J Neurosci Methods 223:133–143PubMedGoogle Scholar
  83. Mayford M, Baranes D, Podsypanina K, Kandel ER (1996) The 3′-untranslated region of CaMKII alpha is a cis-acting signal for the localization and translation of mRNA in dendrites. Proc Natl Acad Sci USA 93(23):13250–13255PubMedCentralPubMedGoogle Scholar
  84. Meyer AH, Katona I, Blatow M, Rozov A, Monyer H (2002) In vivo labeling of parvalbumin-positive interneurons and analysis of electrical coupling in identified neurons. J Neurosci 22(16):7055–7064PubMedGoogle Scholar
  85. Miyoshi H, Blomer U, Takahashi M, Gage FH, Verma IM (1998) Development of a self-inactivating lentivirus vector. J Virol 72(10):8150–8157PubMedCentralPubMedGoogle Scholar
  86. Mizunuma M, Norimoto H, Tao K et al (2014) Unbalanced excitability underlies offline reactivation of behaviorally activated neurons. Nat Neurosci 17(4):503–505PubMedGoogle Scholar
  87. Moriyama H, Moriyama M, Sawaragi K et al (2013) Tightly regulated and homogeneous transgene expression in human adipose-derived mesenchymal stem cells by lentivirus with tet-off system. PLoS One 8(6):e66274PubMedCentralPubMedGoogle Scholar
  88. Nakamura K, Matsumura K, Hübschle T et al (2004) Identification of sympathetic premotor neurons in medullary raphe regions mediating fever and other thermoregulatory functions. J Neurosci 24(23):5370–5380PubMedGoogle Scholar
  89. Naldini L, Blomer U, Gallay P et al (1996) In vivo gene delivery and stable transduction of nondividing cells by a lentiviral vector. Science 272(5259):263–267PubMedGoogle Scholar
  90. Nishino E, Yamada R, Kuba H et al (2008) Sound-intensity-dependent compensation for the small interaural time difference cue for sound source localization. J Neurosci 28(28):7153–7164PubMedGoogle Scholar
  91. Ohno S, Kuramoto E, Furuta T et al (2012) A morphological analysis of thalamocortical axon fibers of rat posterior thalamic nuclei: a single neuron tracing study with viral vectors. Cereb Cortex 22(12):2840–2857PubMedGoogle Scholar
  92. Oliva AA Jr, Jiang M, Lam T, Smith KL, Swann JW (2000) Novel hippocampal interneuronal subtypes identified using transgenic mice that express green fluorescent protein in GABAergic interneurons. J Neurosci 20(9):3354–3368PubMedGoogle Scholar
  93. Orekhova EV, Stroganova TA, Nygren G et al (2007) Excess of high frequency electroencephalogram oscillations in boys with autism. Biol Psychiatry 62(9):1022–1029PubMedGoogle Scholar
  94. Pfeffer CK, Xue M, He M, Huang ZJ, Scanziani M (2013) Inhibition of inhibition in visual cortex: the logic of connections between molecularly distinct interneurons. Nat Neurosci 16(8):1068–1076PubMedCentralPubMedGoogle Scholar
  95. Pi HJ, Hangya B, Kvitsiani D, Sanders JI, Huang ZJ, Kepecs A (2013) Cortical interneurons that specialize in disinhibitory control. Nature 503(7477):521–524PubMedCentralPubMedGoogle Scholar
  96. Povysheva NV, Zaitsev AV, Rotaru DC, Gonzalez-Burgos G, Lewis DA, Krimer LS (2008) Parvalbumin-positive basket interneurons in monkey and rat prefrontal cortex. J Neurophysiol 100(4):2348–2360PubMedCentralPubMedGoogle Scholar
  97. Preuss TM, Kaas JH (1996) Parvalbumin-like immunoreactivity of layer V pyramidal cells in the motor and somatosensory cortex of adult primates. Brain Res 712(2):353–357PubMedGoogle Scholar
  98. Rudy B, McBain CJ (2001) Kv3 channels: voltage-gated K+ channels designed for high-frequency repetitive firing. Trends Neurosci 24(9):517–526PubMedGoogle Scholar
  99. Rudy B, Fishell G, Lee S, Hjerling-Leffler J (2011) Three groups of interneurons account for nearly 100% of neocortical GABAergic neurons. Dev Neurobiol 71(1):45–61PubMedCentralPubMedGoogle Scholar
  100. Sasahara M, Fries JW, Raines EW et al (1991) PDGF B-chain in neurons of the central nervous system, posterior pituitary, and in a transgenic model. Cell 64(1):217–227PubMedGoogle Scholar
  101. Sohal VS, Zhang F, Yizhar O, Deisseroth K (2009) Parvalbumin neurons and gamma rhythms enhance cortical circuit performance. Nature 459(7247):698–702PubMedCentralPubMedGoogle Scholar
  102. Sohn J, Hioki H, Okamoto S, Kaneko T (2014) Preprodynorphin-expressing neurons constitute a large subgroup of somatostatin-expressing GABAergic interneurons in the mouse neocortex. J Comp Neurol 522(7):1506–1526PubMedGoogle Scholar
  103. Somogyi P (1977) A specific ‘axo-axonal’ interneuron in the visual cortex of the rat. Brain Res 136(2):345–350PubMedGoogle Scholar
  104. Somogyi P, Klausberger T (2005) Defined types of cortical interneurone structure space and spike timing in the hippocampus. J Physiol 562(1):9–26PubMedCentralPubMedGoogle Scholar
  105. Somogyi P, Tamas G, Lujan R, Buhl EH (1998) Salient features of synaptic organisation in the cerebral cortex. Brain Res Brain Res Rev 26(2–3):113–135PubMedGoogle Scholar
  106. Spatz WB, Illing RB, Weisenhorn DM (1994) Distribution of cytochrome oxidase and parvalbumin in the primary visual cortex of the adult and neonate monkey, Callithrix jacchus. J Comp Neurol 339(4):519–534Google Scholar
  107. Stichel CC, Singer W, Heizmann CW, Norman AW (1987) Immunohistochemical localization of calcium-binding proteins, parvalbumin and calbindin-D28 k, in the adult and developing visual cortex of cats: a light and electron microscopic study. J Comp Neurol 262(4):563–577PubMedGoogle Scholar
  108. Taki K, Kaneko T, Mizuno N (2000) A group of cortical interneurons expressing mu-opioid receptor-like immunoreactivity: a double immunofluorescence study in the rat cerebral cortex. Neuroscience 98(2):221–231PubMedGoogle Scholar
  109. Tamamaki N, Nakamura K, Furuta T, Asamoto K, Kaneko T (2000) Neurons in Golgi-stain-like images revealed by GFP-adenovirus infection in vivo. Neurosci Res 38(3):231–236PubMedGoogle Scholar
  110. Tamas G, Buhl EH, Somogyi P (1997) Fast IPSPs elicited via multiple synaptic release sites by different types of GABAergic neurone in the cat visual cortex. J Physiol 500(3):715–738PubMedCentralPubMedGoogle Scholar
  111. Tamas G, Somogyi P, Buhl EH (1998) Differentially interconnected networks of GABAergic interneurons in the visual cortex of the cat. J Neurosci 18(11):4255–4270PubMedGoogle Scholar
  112. Tamas G, Buhl EH, Lorincz A, Somogyi P (2000) Proximally targeted GABAergic synapses and gap junctions synchronize cortical interneurons. Nat Neurosci 3(4):366–371PubMedGoogle Scholar
  113. Tanahira C, Higo S, Watanabe K et al (2009) Parvalbumin neurons in the forebrain as revealed by parvalbumin-Cre transgenic mice. Neurosci Res 63(3):213–223PubMedGoogle Scholar
  114. Tanaka YH, Tanaka YR, Fujiyama F, Furuta T, Yanagawa Y, Kaneko T (2011a) Local connections of layer 5 GABAergic interneurons to corticospinal neurons. Front Neural Circuits 5:12PubMedCentralPubMedGoogle Scholar
  115. Tanaka YR, Tanaka YH, Konno M et al (2011b) Local connections of excitatory neurons to corticothalamic neurons in the rat barrel cortex. J Neurosci 31(50):18223–18236PubMedGoogle Scholar
  116. Thomson AM, Lamy C (2007) Functional maps of neocortical local circuitry. Front Neurosci 1(1):19–42PubMedCentralPubMedGoogle Scholar
  117. Thomson AM, West DC, Hahn J, Deuchars J (1996) Single axon IPSPs elicited in pyramidal cells by three classes of interneurones in slices of rat neocortex. J Physiol 496(1):81–102PubMedCentralPubMedGoogle Scholar
  118. Tomioka R, Rockland KS (2006) Improved Golgi-like visualization in retrogradely projecting neurons after EGFP-adenovirus infection in adult rat and monkey. J Histochem Cytochem 54(5):539–548PubMedGoogle Scholar
  119. Tomioka R, Rockland KS (2007) Long-distance corticocortical GABAergic neurons in the adult monkey white and gray matter. J Comp Neurol 505(5):526–538PubMedGoogle Scholar
  120. Tomko RP, Johansson CB, Totrov M, Abagyan R, Frisén J, Philipson L (2000) Expression of the adenovirus receptor and its interaction with the fiber knob. Exp Cell Res 255(1):47–55PubMedGoogle Scholar
  121. Toribio R, Ventoso I (2010) Inhibition of host translation by virus infection in vivo. Proc Natl Acad Sci USA 107(21):9837–9842PubMedCentralPubMedGoogle Scholar
  122. Uematsu M, Hirai Y, Karube F et al (2008) Quantitative chemical composition of cortical GABAergic neurons revealed in transgenic venus-expressing rats. Cereb Cortex 18(2):315–330PubMedGoogle Scholar
  123. van Brederode JF, Helliesen MK, Hendrickson AE (1991) Distribution of the calcium-binding proteins parvalbumin and calbindin-D28 k in the sensorimotor cortex of the rat. Neuroscience 44(1):157–171PubMedGoogle Scholar
  124. Varoqui H, Schafer MK, Zhu H, Weihe E, Erickson JD (2002) Identification of the differentiation-associated Na+/PI transporter as a novel vesicular glutamate transporter expressed in a distinct set of glutamatergic synapses. J Neurosci 22(1):142–155PubMedGoogle Scholar
  125. Wang Y, Gupta A, Toledo-Rodriguez M, Wu CZ, Markram H (2002) Anatomical, physiological, molecular and circuit properties of nest basket cells in the developing somatosensory cortex. Cereb Cortex 12(4):395–410PubMedGoogle Scholar
  126. Watakabe A, Kato S, Kobayashi K et al (2012) Visualization of cortical projection neurons with retrograde TET-off lentiviral vector. PLoS One 7(10):e46157PubMedCentralPubMedGoogle Scholar
  127. Whittington MA, Traub RD, Jefferys JG (1995) Synchronized oscillations in interneuron networks driven by metabotropic glutamate receptor activation. Nature 373(6515):612–615PubMedGoogle Scholar
  128. Williams SR, Stuart GJ (2003) Voltage- and site-dependent control of the somatic impact of dendritic IPSPs. J Neurosci 23(19):7358–7367PubMedGoogle Scholar
  129. Woodruff A, Xu Q, Anderson SA, Yuste R (2009) Depolarizing effect of neocortical chandelier neurons. Frontiers in neural circuits 3:15PubMedCentralPubMedGoogle Scholar
  130. Wouterlood FG, Hartig W, Bruckner G, Witter MP (1995) Parvalbuminimmunoreactive neurons in the entorhinal cortex of the rat: localization, morphology, connectivity and ultrastructure. J Neurocytol 24(2):135–153PubMedGoogle Scholar
  131. Xu X, Roby KD, Callaway EM (2006) Mouse cortical inhibitory neuron type that coexpresses somatostatin and calretinin. J Comp Neurol 499(1):144–160PubMedGoogle Scholar
  132. Xu X, Roby KD, Callaway EM (2010) Immunochemical characterization of inhibitory mouse cortical neurons: three chemically distinct classes of inhibitory cells. J Comp Neurol 518(3):389–404PubMedCentralPubMedGoogle Scholar
  133. Yin DX, Zhu L, Schimke RT (1996) Tetracycline-controlled gene expression system achieves high-level and quantitative control of gene expression. Anal Biochem 235(2):195–201PubMedGoogle Scholar
  134. Zaiss AK, Son S, Chang LJ (2002) RNA 3′ readthrough of oncoretrovirus and lentivirus: implications for vector safety and efficacy. J Virol 76(14):7209–7219PubMedCentralPubMedGoogle Scholar
  135. Zaitsev AV, Gonzalez-Burgos G, Povysheva NV, Kröner S, Lewis DA, Krimer LS (2005) Localization of calcium-binding proteins in physiologically and morphologically characterized interneurons of monkey dorsolateral prefrontal cortex. Cereb Cortex 15(8):1178–1186PubMedGoogle Scholar
  136. Zaitsev AV, Povysheva NV, Gonzalez-Burgos G et al (2009) Interneuron diversity in layers 2–3 of monkey prefrontal cortex. Cereb Cortex 19(7):1597–1615PubMedCentralPubMedGoogle Scholar
  137. Zufferey R, Nagy D, Mandel RJ, Naldini L, Trono D (1997) Multiply attenuated lentiviral vector achieves efficient gene delivery in vivo. Nat Biotechnol 15(9):871–875PubMedGoogle Scholar

Copyright information

© Japanese Association of Anatomists 2014

Authors and Affiliations

  1. 1.Department of Morphological Brain Science, Graduate School of MedicineKyoto UniversityKyotoJapan

Personalised recommendations