Anatomical Science International

, Volume 89, Issue 1, pp 1–10 | Cite as

Current status of drug therapies for osteoporosis and the search for stem cells adapted for bone regenerative medicine

  • Yoshikazu MikamiEmail author
  • Taro Matsumoto
  • Koichiro Kano
  • Taku Toriumi
  • Masanori Somei
  • Masaki J. Honda
  • Kazuo Komiyama
Review Article


A number of factors can lead to bone disorders such as osteoporosis, in which the balance of bone resorption vs. bone formation is upset (i.e., more bone is resorbed than is formed). The result is a loss of bone mass, with a concomitant decrease in bone density. Drugs for osteoporosis can be broadly classified as “bone resorption inhibitors”, which impede bone resorption by osteoclasts, and “bone formation accelerators”, which augment bone formation by osteoblasts. Here, we describe representative drugs in each class, i.e., the bisphosphonates and the parathyroid hormone. In addition, we introduce two novel bone formation accelerators, SST-VEDI and SSH-BMI, which are currently under investigation by our research group. On the other hand, regenerative therapy, characterized by (ideally) the use of a patient’s own cells to regenerate lost tissue, is now a matter of global interest. At present, candidate cell sources for regenerative therapy include embryonic stem cells (created from embryos based on the fertilization of oocytes), induced pluripotent stem cells (created artificially by using somatic cells as the starting material), and somatic stem cells (found in the tissues of the adult body). This review summarizes the identifying features and the therapeutic potential of each of these stem cell types for bone regenerative medicine. Although a number of different kinds of somatic stem cells have been reported, we turn our attention toward two that are of particular interest for prospective applications in bone repair: the dedifferentiated fat cell, and the deciduous dental pulp-derived stem cell.


Osteoporosis SST-VEDI SSH-BMI DFAT cell DDPSC 



This work was supported in part by grants from A-STEP; Adaptable and Seamless Technology Transfer Program through target-driven R&D (Exploratory Research).

Conflict of interest



  1. Bagan J, Scully C, Sabater V, Jimenez Y (2009) Osteonecrosis of the jaws in patients treated with intravenous bisphosphonates (BRONJ): a concise update. Oral Oncol 45:301–308PubMedCrossRefGoogle Scholar
  2. Bereither-Hahn J, Zylberberg L (1993) Regeneration of teleost fish scale. Comp Biochem Physiol 105A:625–664CrossRefGoogle Scholar
  3. Black DM, Greenspan SL, Ensrud KE, Palermo L, McGowan JA, Lang TF, Garnero P, Bouxsein ML, Bilezikian JP, Rosen CJ (2003) The effects of parathyroid hormone and alendronate alone or in combination in postmenopausal osteoporosis. N Engl J Med 349:1207–1215PubMedCrossRefGoogle Scholar
  4. Buhring HJ, Battula VL, Treml S, Schewe B, Kanz L, Vogel W (2007) Novel markers for the prospective isolation of human MSC. Ann NY Acad Sci 1106:262–271PubMedCrossRefGoogle Scholar
  5. Chavez D, Acevedo LA, Mata R (1999) Isolation of tryptamine derived amides from Rollinia mucosa. J Nat Prod 62:1119–1122PubMedCrossRefGoogle Scholar
  6. Drake MT, Srinivasan B, Mödder UI, Ng AC, Undale AH, Roforth MM, Peterson JM, McCready LK, Riggs BL, Khosla S (2011) Effects of intermittent parathyroid hormone treatment on osteoprogenitor cells in postmenopausal women. Bone 49:349–355PubMedCentralPubMedCrossRefGoogle Scholar
  7. Esbrit P, Alcaraz MJ (2013) Current perspectives on parathyroid hormone (PTH) and PTH-related protein (PTHrP) as bone anabolic therapies. Biochem Pharmacol 85:1417–1423PubMedCrossRefGoogle Scholar
  8. Evans MJ, Kaufman MH (1981) Establishment in culture of pluripotential cells from mouse embryos. Nature 292:154–156PubMedCrossRefGoogle Scholar
  9. Finkelstein JS, Hayes A, Hunzelman JL, Wyland JJ, Lee H, Neer RM (2003) The effects of parathyroid hormone, alendronate, or both in men with osteoporosis. N Engl J Med 349:1216–1226PubMedCrossRefGoogle Scholar
  10. Gronthos S, Mankani M, Brahim J, Robey PG, Shi S (2000) Postnatal human dental pulp stem cells (DPSCs) in vitro and in vivo. Proc Natl Acad Sci USA 97:13625–13630PubMedCentralPubMedCrossRefGoogle Scholar
  11. Jarocha D, Lukasiewicz E, Majka M (2008) Advantage of mesenchymal stem cells (MSC) expansion directly from purified bone marrow CD105+ and CD271+ cells. Folia Histochem Cytobiol 46:307–314PubMedGoogle Scholar
  12. Jumabay M, Matsumoto T, Yokoyama SI, Kano K, Masuko T, Mitsumata M, Saito S, Hirayama A, Mugishima H, Fukuda N (2009) Dedifferentiated fat cells convert to cardiomyocytes phenotype and repair infarcted cardiac tissue in rats. J Mol Cell Cardiol 47:565–575PubMedCrossRefGoogle Scholar
  13. Kazama T, Fujie M, Endo T, Kano K (2008) Mature adipocyte-derived dedifferentiated fat cells can transdifferentiate into skeletal myocytes in vitro. Biochem Biophys Res Commun 377:780–785PubMedCrossRefGoogle Scholar
  14. Kikuiri T, Kim I, Yamaza T, Akiyama K, Zhang Q, Li Y, Chen C, Chen W, Wang S, Le AD, Shi S (2010) Cell-based immunotherapy with mesenchymal stem cells cures bisphosphonate-related osteonecrosis of the jaw-like disease in mice. J Bone Miner Res 25:1668–1679PubMedCentralPubMedCrossRefGoogle Scholar
  15. Komrakova M, Stuermer EK, Werner C, Wicke M, Kolios L, Sehmisch S, Tezval M, Daub F, Martens T, Witzenhausen P, Dullin C, Stuermer KM (2010) Effect of human parathyroid hormone hPTH (1–34) applied at different regimes on fracture healing and muscle in ovariectomized and healthy rats. Bone 47:480–492PubMedCrossRefGoogle Scholar
  16. Kular J, Tickner J, Chim SM, Xu J (2012) An overview of the regulation of bone remodelling at the cellular level. Clin Biochem 45:863–873PubMedCrossRefGoogle Scholar
  17. Lambrinoudaki I, Christodoulakos G, Botsis D (2006) Bisphosphonates. Ann NY Acad Sci 1092:397–402PubMedCrossRefGoogle Scholar
  18. Lippuner K (2012) The future of osteoporosis treatment: a research update. Swiss Med Wkly 142:w13624PubMedGoogle Scholar
  19. Lombardi G, Di Somma C, Rubino M, Faggiano A, Vuolo L, Guerra E, Contaldi P, Savastano S, Colao A (2011) The roles of parathyroid hormone in bone remodeling: prospects for novel therapeutics. J Endocrinol Invest 34:18–22PubMedGoogle Scholar
  20. Lowe H, McMahon DJ, Rubin MR, Bilezikian JP, Silverberg SJ (2007) Normocalcemic primary hyperparathyroidism: further characterization of a new clinical phenotype. J Clin Endocrinol Metab 92:3001–3005PubMedCrossRefGoogle Scholar
  21. Matsumoto T, Kano K, Kondo D, Iribe Y, Tanaka T, Matsubara Y, Sakuma T, Fukuda N, Satomi A, Otaki M, Ryu J, Mugishima H (2008) Mature adipocyte-derived dedifferentiated fat cells exhibit multilineage potential. J Cell Physiol 215:210–222PubMedCrossRefGoogle Scholar
  22. McClung M, Harris ST, Miller PD, Bauer DC, Davison KS, Dian L, Hanley DA, Kendler DL, Yuen CK, Lewiecki EM (2013) Bisphosphonate therapy for osteoporosis: benefits, risks, and drug holiday. Am J Med 126:13–20PubMedCrossRefGoogle Scholar
  23. Mikami Y, Somei M, Takagi M (2009) A tryptamine derivative, SST-VEDI-1, inhibits apoptosis and stimulates mineralization in osteoblasts. Endocr J 56:665–678PubMedCrossRefGoogle Scholar
  24. Mikami Y, Somei M, Tsuda M (2011a) SSH-BM-I, a tryptamine derivative, stimulates mineralization in terminal osteoblast differentiation but inhibits osteogenesis of pre-committed progenitor cells. J Pharmacol Sci 18:63–72CrossRefGoogle Scholar
  25. Mikami Y, Senoo M, Lee M, Yamada K, Ochiai K, Honda MJ, Watanabe E, Watanabe N, Somei M, Takagi M (2011b) Inhibitory effects of a tryptamine derivative on ultraviolet radiation-induced apoptosis in MC3T3-E1 mouse osteoblasts. J Pharmacol Sci 115:214–220PubMedCrossRefGoogle Scholar
  26. Mikami Y, Ishii Y, Watanabe N, Shirakawa T, Suzuki S, Irie S, Isokawa K, Honda MJ (2011c) CD271/p75(NTR) inhibits the differentiation of mesenchymal stem cells into osteogenic, adipogenic, chondrogenic, and myogenic lineages. Stem Cells Dev 20:901–913PubMedCrossRefGoogle Scholar
  27. Miura M, Gronthos S, Zhao M, Lu B, Fisher LW, Robey PG, Shi S (2003) SHED: stem cells from human exfoliated deciduous teeth. Proc Natl Acad Sci USA 100:5807–5812PubMedCentralPubMedCrossRefGoogle Scholar
  28. Morley P, Whitfield JF, Willick GE (2001) Parathyroid hormone: an anabolic treatment for osteoporosis. Curr Pharm Des 7:671–687PubMedCrossRefGoogle Scholar
  29. Negishi-Koga T, Shinohara M, Komatsu N, Bito H, Kodama T, Friedel RH, Takayanagi H (2011) Suppression of bone formation by osteoclastic expression of semaphorin 4D. Nat Med 23(17):1473–1480CrossRefGoogle Scholar
  30. Nur R, Fukuda N, Matsumoto T, Medet J, Kano K, Yamamoto C, Maruyama T, Endo M, Matumoto K (2008) Implantation of dedifferentiated fat cells ameliorates Habu Snake venom-induced chronic renal dysfunction in tenascin-C-deficient mice. Nephron Exp Nephrol 110:e91–e98PubMedCrossRefGoogle Scholar
  31. Ohta Y, Takenaga M, Tokura Y, Hamaguchi A, Matsumoto T, Kano K, Mugishima H, Okano H, Igarashi R (2008) Mature adipocyte-derived cells, DFAT (de-differentiated fat cells) promoted functional recovery from spinal cord injury-induced motor dysfunction in rats. Cell Transpl 17:877–886CrossRefGoogle Scholar
  32. Oki Y, Watanabe S, Endo T, Kano K (2008) Mature adipocyte-derived dedifferentiated fat cells can trans-differentiate into osteoblasts in vitro and in vivo only by all-trans retinoic acid. Cell Struct Funct 33:211–222PubMedCrossRefGoogle Scholar
  33. Quirici N, Soligo D, Bossolasco P, Servida F, Lumini C, Deliliers GL (2002) Isolation of bone marrow mesenchymal stem cells by anti-nerve growth factor receptor antibodies. Exp Hematol 30:783–791PubMedCrossRefGoogle Scholar
  34. Rizzoli R, Reginster JY (2011) Adverse drug reactions to osteoporosis treatments. Expert Rev Clin Pharmacol 4(5):593–604PubMedCrossRefGoogle Scholar
  35. Ruggiero SL, Mehrotra B (2009) Bisphosphonate-related osteonecrosis of the jaw: diagnosis, prevention, and management. Annu Rev Med 60:85–96PubMedCrossRefGoogle Scholar
  36. Sakuma T, Matsumoto T, Kano K, Fukuda N, Obinata D, Yamaguchi K, Yoshida T, Takahashi S, Mugishima H (2009) Mature adipocyte derived dedifferentiated fat cells can differentiate into smooth muscle-like cells and contribute to bladder tissue regeneration. J Urol 182:355–365PubMedCrossRefGoogle Scholar
  37. Schaffler MB, Kennedy OD (2012) Osteocyte signaling in bone. Curr Osteoporos Rep 10:118–125PubMedCentralPubMedCrossRefGoogle Scholar
  38. Schwartz SD, Hubschman JP, Heilwell G, Franco-Cardenas V, Pan CK, Ostrick RM, Mickunas E, Gay R, Klimanskaya I, Lanza R (2012) Embryonic stem cell trials for macular degeneration: a preliminary report. Lancet 379:713–720PubMedCrossRefGoogle Scholar
  39. Somei M (2004) Definitions of IPF and APF. Heterocycles 64:483CrossRefGoogle Scholar
  40. Somei M, Iwaki T, Yamada F, Tanaka Y, Shigenobu K, Koike K, Suzuki N, Hattori A (2006) The ideal synthetic method aimed at the leads for an a2-BLOCKR, an inhibitor of blood platelet aggregation, and an anti-osteoporosis agent. Heterocycles 68:1565–1569CrossRefGoogle Scholar
  41. Subbiah V, Madsen VS, Raymond AK, Benjamin RS, Ludwig JA (2010) Of mice and men: divergent risks of teriparatide-induced osteosarcoma. Osteoporos Int 21:1041–1045PubMedCrossRefGoogle Scholar
  42. Suzuki N, Somei M, Kitamura K, Reiter RJ, Hattori A (2008) Novel bromomelatonin derivatives suppress osteoclastic activity and increase osteoblastic activity: implications for the treatment of bone diseases. J Pineal Res 44:326–334PubMedCrossRefGoogle Scholar
  43. Takagi Y, Hirano T, Yamada J (1989) Scale regeneration of tilapia (Oreochromis miloticus) under various ambient and dietary calcium concentrations. Comp Biochem Physiol 92A:605–608Google Scholar
  44. Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126:663–676PubMedCrossRefGoogle Scholar
  45. Tamaoki N, Takahashi K, Tanaka T, Ichisaka T, Aoki H, Takeda-Kawaguchi T, Iida K, Kunisada T, Shibata T, Yamanaka S, Tezuka K (2010) Dental pulp cells for induced pluripotent stem cell banking. J Dent Res 89:773–778PubMedCrossRefGoogle Scholar
  46. Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ, Marshall VS, Jones JM (1998) Embryonic stem cell lines derived from human blastocysts. Science 282:1145–1147PubMedCrossRefGoogle Scholar
  47. Vitale AM, Wolvetang E, Mackay-Sim A (2011) Induced pluripotent stem cells: a new technology to study human diseases. Int J Biochem Cell Biol 43:843–846PubMedCrossRefGoogle Scholar
  48. Wilmut I, Schnieke AE, McWhir J, Kind AJ, Campbell KH (1997) Viable offspring derived from fetal and adult mammalian cells. Nature 385:810–813PubMedCrossRefGoogle Scholar
  49. Yagi K, Kondo D, Okazaki Y, Kano K (2004) A novel preadipocyte cell line established from mouse adult mature adipocytes. Biochem Biophys Res Commun 321:967–974PubMedCrossRefGoogle Scholar
  50. Yamada J (1971) A fine structural aspect of the development of scales in chum salmon fry. Bull Jap Soc Sci Fish 37:18–29CrossRefGoogle Scholar
  51. Yamashita T, Tucker KL, Barde YA (1999) Neurotrophin binding to the p75 receptor modulates Rho activity and axonal outgrowth. Neuron 24:585–593PubMedCrossRefGoogle Scholar
  52. Yu J, Vodyanik MA, Smuga-Otto K, Antosiewicz-Bourget J, Frane JL, Tian S, Nie J, Jonsdottir GA, Ruotti V, Stewart R, Slukvin II, Thomson JA (2007) Induced pluripotent stem cell lines derived from human somatic cells. Science 318:1917–1920PubMedCrossRefGoogle Scholar
  53. Zhang G, Shang B, Yang P, Cao Z, Pan Y, Zhou Q (2011) Induced pluripotent stem (iPS) cell consensus genes: implication for the risk of tumorigenesis and cancers in iPS cell therapy. Stem Cells Dev 21:955–964CrossRefGoogle Scholar
  54. Zuk PA, Zhu M, Mizuno H, Huang J, Futrell JW, Katz AJ, Benhaim P, Lorenz HP, Hedrick MH (2001) Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Eng 7:211–228PubMedCrossRefGoogle Scholar

Copyright information

© Japanese Association of Anatomists 2013

Authors and Affiliations

  • Yoshikazu Mikami
    • 1
    • 5
    Email author
  • Taro Matsumoto
    • 2
  • Koichiro Kano
    • 3
  • Taku Toriumi
    • 5
  • Masanori Somei
    • 4
  • Masaki J. Honda
    • 5
  • Kazuo Komiyama
    • 1
  1. 1.Department of PathologyNihon University School of DentistryTokyoJapan
  2. 2.Department of Functional Morphology, Division of Cell Regeneration and TransplantationNihon University School of MedicineTokyoJapan
  3. 3.Laboratory of Cell and Tissue Biology, College of Bioresource SciencesNihon UniversityFujisawaJapan
  4. 4.Division of Pharmaceutical Sciences, Graduate School of Natural Science and TechnologyKanazawa UniversityKanazawaJapan
  5. 5.Department of AnatomyNihon University School of DentistryTokyoJapan

Personalised recommendations