Asia Pacific Education Review

, Volume 13, Issue 1, pp 65–76 | Cite as

The application of various nonlinear models to describe academic growth trajectories: an empirical analysis using four-wave longitudinal achievement data from a large urban school district

  • Tacksoo Shin


This study introduced various nonlinear growth models, including the quadratic conventional polynomial model, the fractional polynomial model, the Sigmoid model, the growth model with negative exponential functions, the multidimensional scaling technique, and the unstructured growth curve model. It investigated which growth models effectively describe student growth in math and reading using four-wave longitudinal achievement data. The objective of the study is to provide valuable information to researchers especially when they consider applying one of the nonlinear models to longitudinal studies. The results showed that the quadratic conventional polynomial model fit the data best. However, this model seemed to overfit the data and made statistical inference problematic concerning parameter estimates. Alternative nonlinear models with fewer parameters adequately fit the data and yielded consistent significance testing results under extreme multicollinearity. It indicates that the alternative models denoting somewhat simpler models would be selected over the conventional polynomial model with more fixed parameters. Other practical issues pertaining to these growth models are also discussed.


Academic achievement Longitudinal study Latent curve modeling Nonlinear growth function 



This research was supported by 2010 Research Fund of Myongji University.


  1. Belsley, D. A., Kuh, E., & Welsch, R. E. (2004). Regression diagnostics: Identifying influential data and sources of collinearity. Hoboken: Wiley.Google Scholar
  2. Bertalanffy, L. von. (1938). A quantitative theory of organic growth. Human Biology, 10, 181–213.Google Scholar
  3. Biesanz, J. C., Debb-Sossa, N., Papadakis, A. A., Bollen, K. A., & Curran, P. J. (2004). The role of coding time in estimating and interpreting growth curve models. Psychological Methods, 9, 30–52.CrossRefGoogle Scholar
  4. Blozis, S. A. (2007a). A Newton procedure for conditionally linear mixed-effects models. Behavioral Research Method, 39(4), 695–708.CrossRefGoogle Scholar
  5. Blozis, S. A. (2007b). On fitting nonlinear latent curve models to multiple variables measured longitudinally. Structural Equation Modeling: A Multidisciplinary Journal, 14(2), 179–201.CrossRefGoogle Scholar
  6. Blozis, S. A., Harring, J. R., & Mels, G. (2008). Using LISREL to Fit Nonlinear Latent Curve Models. Structural Equation Modeling: A Multidisciplinary Journal, 15(2), 24.CrossRefGoogle Scholar
  7. Bollen, K. A., & Curran, P. J. (2006). Latent curve models: A structural equation perspective. Hoboken: Wiley.Google Scholar
  8. Bovaird, J. A. (2007). Multilevel structural equation models for contextual factors. In T. D. Little, J. A. Bovaird, & N. A. Card (Eds.), Modeling contextual effects in longitudinal studies (pp. 149–182). New Jersey: Lawrence Erlbaum Association.Google Scholar
  9. Brekke, J. S., Long, J. D., Nesbitt, N., & Sobel, E. (1997). The impact of service characteristics on functional outcomes from community support programs for persons with schizophrenia: A growth curve analysis. Journal of Consulting and Clinical Psychology, 65(3), 464–475.CrossRefGoogle Scholar
  10. Browne, M. W. (1993). Structured latent curve models. In C. M. Cuadras & C. R. Rao, (Eds.), Multivariate analysis: Future directions 2 (pp. 171–198). Amsterdam: Elsevier-North Holland.Google Scholar
  11. Browne, M. W., & Cudeck, R. (1993). Alternative ways of assessing model fit. In K. A. Bollen & J. S. Long (Eds.), Testing structural equation models (pp. 136–162). Beverly Hills: Sage.Google Scholar
  12. Browne, M. W., & du Toit, S. H. C. (1991). Models for learning data. In L. Collins & J. L. Horn (Eds.), Best methods for the analysis of change (pp. 47–68). Washington: APA.Google Scholar
  13. Bryk, A. S., & Raudenbush, S. W. (1987). Application of hierarchical linear models to assessing change. Psychological Bulletin, 101(1), 147–158.CrossRefGoogle Scholar
  14. Bryk, A. S., & Raudenbush, S. W. (1992). Hierarchical linear models: Applications and data analysis methods. Newbury Park: Sage.Google Scholar
  15. Crijnen, A. A. M., Feehan, M., & Kellam, S. G. (1998). The course and malleability of reading achievement in elementary school: The application of growth curve modeling in the evaluation of a mastery learning intervention. Learning and Individual Differences, 10(2), 137–157.CrossRefGoogle Scholar
  16. Cudeck, R. (1996). Mixed-effects models in the study of individual differences with repeated measures data. Multivariate Behavioral Research, 31(3), 371–403.CrossRefGoogle Scholar
  17. Curran, P. J., & Hussong, A. M. (2002). Structural equation modeling of repeated measures data: Latent curve analysis. In D. S. Moskowitz & S. L. Hershberger (Eds.), Modeling intraindividual variability with repeated measures data: Methods and application. New Jersey: Lawrence Erlbaum Association.Google Scholar
  18. Ding, C. (2003). Exploratory longitudinal profile analysis via multidimensional scaling. Practical Assessment, Research & Evaluation, On-line serial 8.Google Scholar
  19. Ding, C. S., Davison, M. L., & Petersen, A. C. (2005). Multidimensional scaling analysis of growth and change. Journal of Educational Measurement, 42(2), 171–191.CrossRefGoogle Scholar
  20. Gbangboche, A. B., Glele-Kakai, R., Salifou, S., Albuquerque, L. G., & Leroy, P. L. (2008). Comparison of nonlinear growth models to describe the growth curve in West African Dwarf sheep. Animal, 2(7), 1003–1012.CrossRefGoogle Scholar
  21. Grewal, R., Cote, J. A., & Baumgartner, H. (2004). Multicollinearity and measurement error in structural equation models: Implications for theory testing. Marketing Science, 23(4), 519–529.CrossRefGoogle Scholar
  22. Grimm, K. J., & Ram, N. (2009). Nonlinear Growth Models in Mplus and SAS. Structural Equation Modeling: A Multidisciplinary Journal, 16(4), 676–701.CrossRefGoogle Scholar
  23. Hoel, P. G. (1958). Efficiency problems in polynomial estimation. The Annals of Mathematical Statistics, 1134–1145.Google Scholar
  24. Huttenlocher, J., Haight, W., Bryk, A., Seltzer, M., & Lyons, T. (1991). Early vocabulary growth: Relation to language input and gender. Developmental Psychology, 27(2), 236–248.CrossRefGoogle Scholar
  25. Khamis, A., Ismail, Z., Haron, K., & Mohammed, A. T. (2005). Nonlinear growth models for modeling oil palm yield growth. Journal of Mathematics and Statistics, 1(3), 225–233.CrossRefGoogle Scholar
  26. Kim, S. K., Frisby, C. L., & Davison, M. L. (2004). Estimating cognitive profiles using profile analysis via multidimensional scaling (PAMS). Multivariate Behavioral Research, 39(4), 595–624.CrossRefGoogle Scholar
  27. Lee, J. (2010). Tripartite growth trajectories of reading and math achievement: Tracking national academic progress at primary, middle and high school levels. American Educational Research Journal, 47(4), 800–832.CrossRefGoogle Scholar
  28. Long, J., & Ryoo, J. (2010). Using fractional polynomials to model nonlinear trends in longitudinal data. British Journal of Mathematical and Statistical Psychology, 63(1), 177–203.CrossRefGoogle Scholar
  29. Malthus, T. R. (1798). An essay on the principle of population. UK: Johnson.Google Scholar
  30. McArdle, J. J. (1989). Structural modeling experiments using multiple growth functions. In P. Ackerman, R. Kanfer, & R. Cudeck (Eds.), Learning and individual differences: Abilities, motivation and methodology (pp. 71–117). Hillsdale: Lawrence Erlbaum Associates.Google Scholar
  31. McArdle, J. J., & Epstein, D. (1987). Latent growth curves within developmental structural equation models. Child Development, 58(1), 110–133.CrossRefGoogle Scholar
  32. Mehta, P. D., & Neale, M. C. (2005). People are variables too: Multilevel structural equation modeling. Psychological Methods, 10(3), 259–284.CrossRefGoogle Scholar
  33. Meredith, W., & Tisak, J. (1984). Tuckerizing curves. Paper presented at the annual meeting of the Psychometric Society, Santa Barbara, CA.Google Scholar
  34. Meredith, W., & Tisak, J. (1990). Latent curve analysis. Psychometrika, 55(1), 107–122.CrossRefGoogle Scholar
  35. Mosteller, F., & Tukey, J. W. (1997). Data analysis and regression: A second course. New York: Addison-Wesley.Google Scholar
  36. Muthen, B. O., & Khoo, S. T. (1998). Longitudinal studies of achievement growth using latent variable modeling. Learning and individual differences, 10(2), 73–101.CrossRefGoogle Scholar
  37. Muthén, L. K., & Muthén, B. O. (2007). Mplus user’s guide (5th ed.). Los Angeles: Muthén & Muthén.Google Scholar
  38. Muthén, L. K., & Muthén, B. O. (2010). Mplus user’s guide (6th ed.). Los Angeles: Muthén & Muthén.Google Scholar
  39. Neals, M. C. (1995). Mx: Statistical modeling. Richmond: Department of Human Genetics, Medical College of Virginia.Google Scholar
  40. Neale, M. C., & McArdle, J. J. (2000). Structured latent growth curves for twin data. Twin Research and Human Genetics, 3(3), 165–177.CrossRefGoogle Scholar
  41. Parrila, R., Aunola, K., Leskinen, E., Nurmi, J., & Kriby, J. R. (2005). Development of individual differences in reading: results from longitudinal studies in english and finnish. Journal of Educational Psychology, 97(3), 299–319.CrossRefGoogle Scholar
  42. Pinheiro, J. C., & Bates, D. M. (2000). Mixed-Effects Models in S and S-Plus. New York: Springer.CrossRefGoogle Scholar
  43. Plewis, I. (1993). Reading progress. In G. Woodhouse (Ed.), A guide to ML3 for new users (pp. 98–124). London: University of London, Institute of Education.Google Scholar
  44. Ram, N., & Grimm, K. J. (2007). Using simple and complex growth models to articulate developmental change: Matching method to theory. International Journal of Behavioral Development, 31, 303–316.CrossRefGoogle Scholar
  45. Randall, J. H., & Rayner, A. A. (1990). The accuracy of least squares calculations with the Cholesky algorithm. Linear Algebra and its Applications, 127(1), 463–502.CrossRefGoogle Scholar
  46. Renne, U., Langhammer, M., Wytrwat, E., Dietl, G., & Bunger, L. (2003). Genetic statistical analysis of growth in selected and unselected mouse lines. Journal of Experimental Animal Science, 42, 218–232.CrossRefGoogle Scholar
  47. Richards, F. J. (1959). A flexible growth function for empirical use. Journal of Experimental Botany, 10, 290–301.CrossRefGoogle Scholar
  48. Rogosa, D. R., & Willett, J. B. (1985). Understanding correlates of change by modeling individual differences in growth. Psychometrika, 50(2), 203–228.CrossRefGoogle Scholar
  49. Schwarz, G. (1978). Estimating the dimension of a model. The annals of statistics, 6(2), 461–464.CrossRefGoogle Scholar
  50. Shin, T. (2007). Comparison of three growth modeling techniques in the multilevel analysis of longitudinal academic achievement scores: Latent growth modeling, hierarchical linear modeling, and longitudinal profile analysis via multidimensional scaling. Asia Pacific Education Review, 8(2), 262–275.CrossRefGoogle Scholar
  51. Shin, T., Davison, M. L., & Long, J. D. (2009). Effects of Missing Data Methods in Structural Equation Modeling With Nonnormal Longitudinal Data. Structural Equation Modeling: A Multidisciplinary Journal, 16(1), 70–98.CrossRefGoogle Scholar
  52. Singer, J. D., & Willett, J. B. (2003). Applied longitudinal data analysis: Modeling change and event occurrence. New York: Oxford University Press.Google Scholar
  53. Smith, K. E., Landry, S. H., & Swank, P. R. (2000). Does the content of mothers’ verbal stimulation explain differences in children’s development of verbal and nonverbal cognitive skills? Journal of School Psychology, 38(1), 27–49.CrossRefGoogle Scholar
  54. Stoolmiller, M. (1995). Using latent growth curve models to study developmental processes. The analysis of change, 103–138.Google Scholar
  55. Tetko, I. V., Livingstone, D. J., & Luik, A. I. (1995). Neural network studies. 1. Comparison of overfitting and overtraining. Journal of Chemical information and computer science, 35, 826–833.Google Scholar
  56. Thieme, H. R. (2003). Mathematics in population biology. Princeton: Princeton University Press.Google Scholar
  57. Tucker, L. R., & Lewis, C. (1973). A reliability coefficient for maximum likelihood factor analysis. Psychometrika, 38, 1–10.CrossRefGoogle Scholar
  58. Vasu, E. S., & Elmore, P. B. (1975). The effect of multicollinearity and the violation of the assumption of normality on the testing of hypotheses in regression analysis. Paper presented at the Annual Meeting of the American Educational Research Association. Washington.Google Scholar
  59. Verhulst, P.-F. (1838). Notice sur la loi que la population poursuit dans son accroissement. Correspondance mathématique et physique, 10, 113–121.Google Scholar
  60. Willet, J. B. (1988). Questions and answers in the measurement change. In E. Rothkopf (Ed.), Review of research in education (pp. 345–422). Washington: American Education Research Association.Google Scholar
  61. Winsor, C. P. (1932). The Gompertz curve as a growth curve. Proceedings of the National Academy of Sciences of the United States of America, 18(1), 1–8.CrossRefGoogle Scholar
  62. Zhang, L. J. (1997). Cross-validation of nonlinear growth functions for modeling tree height-diameter relationships. Annals of Botany, 79(3), 251.Google Scholar

Copyright information

© Education Research Institute, Seoul National University, Seoul, Korea 2011

Authors and Affiliations

  1. 1.Department of Youth Education and Leadership, College of Social ScienceMyongji UniversitySeoulKorea

Personalised recommendations