Advertisement

Fisheries Science

, Volume 85, Issue 5, pp 847–858 | Cite as

Cloning of selected body surface antimicrobial peptide/protein genes of Atlantic salmon and their responses to Aeromonas salmonicida

  • Yoichiro KitaniEmail author
  • Dang Quang Hieu
  • Viswanath Kiron
Original Article Chemistry and Biochemistry

Abstract

Antimicrobial peptides/proteins (AMPs), the important host-defence molecules with antimicrobial and immunomodulatory properties, effectively ward off pathogenic organisms. The responses of such molecules of Atlantic salmon during Aeromonas salmonicida infection that causes losses to salmon farms are not clearly described. Two trials were carried out to understand the regulation of two known AMP genes (cathelicidins, cath1, 2) and five newly cloned AMP genes (beta-defensins, defb1-4 and l-amino acid oxidase, lao); in vivo responses following intraperitoneal injection of A. salmonicida vaccine and in vitro responses upon exposure of gill tissues to A. salmonicida. The vaccine injection induced cath1, cath2 and lao expression in the gills at 24 h post injection. The live A. salmonicida exposure of Atlantic salmon gill tissue explant revealed the upregulation of the cath1 and cath2 within 48 h. The defb genes were not altered by either injection or exposure to A. salmonicida. Based on the evidence we suggest that the cathelicidins (cath1 and cath2) are A. salmonicida-inducible AMPs and could be possible biomarkers of infection.

Keywords

Antimicrobial peptides/proteins (AMPs) Atlantic salmon Innate immunity Body surface host-defence Cathelicidins Aeromonas salmonicida 

Notes

Acknowledgements

We would like to thank the staff at the Research Station, Nord University, Norway for maintenance of the fish. This research was supported by the Researcher Exchange Program between the Japan Society for the Promotion of Science and The Research Council of Norway (Project number 219006).

Supplementary material

12562_2019_1331_MOESM1_ESM.pdf (192 kb)
Supplementary material 1 (PDF 193 kb)

References

  1. Basañez G, Shinnar AE, Zimmerberg J (2002) Interaction of hagfish cathelicidin antimicrobial peptides with model lipid membranes. FEBS Lett 532:115–120CrossRefGoogle Scholar
  2. Bridle A, Nosworthy E, Polinski M, Nowak B (2011) Evidence of an antimicrobial-immunomodulatory role of Atlantic salmon cathelicidins during infection with Yersinia ruckeri. PLoS One 6:e23417.  https://doi.org/10.1371/journal.pone.0023417 CrossRefGoogle Scholar
  3. Chang C-I, Zhang YA, Zou J, Nie P, Secombes CJ (2006) Two cathelicidin genes are present in both rainbow trout (Oncorhynchus mykiss) and Atlantic salmon (Salmo salar). Antimicrob Agents Chemother 50:185–195.  https://doi.org/10.1128/AAC.50.1.185-195.2006 CrossRefGoogle Scholar
  4. Cole AM, Weis P, Diamond G (1997) Isolation and characterization of pleurocidin, an antimicrobial peptide in the skin secretions of winter flounder. J Biol Chem 272:12008–12013CrossRefGoogle Scholar
  5. Du XY, Clemetson KJ (2002) Snake venom l-amino acid oxidases. Toxicon 40:659–665CrossRefGoogle Scholar
  6. Ellis AE (2001) Innate host defense mechanisms of fish against viruses and bacteria. Dev Comp Immunol 25:827–839.  https://doi.org/10.1016/S0145-305X(01)00038-6 CrossRefGoogle Scholar
  7. Furlan M, Rosani U, Gambato S, Irato P, Manfrin A, Mardirossian M, Venier P, Pallavicini A, Scocchi M (2018) Induced expression of cathelicidins in trout (Oncorhynchus mykiss) challenged with four different bacterial pathogens. J Pept Sci 24:e3089.  https://doi.org/10.1002/psc.3089 CrossRefGoogle Scholar
  8. Guiry A, Flynn D, Hubert S, O’Keeffe AM, LeProvost O, White SL, Forde PF, Davoren P, Houeix B, Smith TJ, Cotter D, Wilkins NP, Cairns MT (2010) Testes and brain gene expression in precocious male and adult maturing Atlantic salmon (Salmo salar). BMC Genom 11:211.  https://doi.org/10.1186/1471-2164-11-211 CrossRefGoogle Scholar
  9. Haugarvoll E, Bjerkås I, Nowak BF, Hordvik I, Koppang EO (2008) Identification and characterization of a novel intraepithelial lymphoid tissue in the gills of Atlantic salmon. J Anat 213:202–209.  https://doi.org/10.1111/j.1469-7580.2008.00943.x CrossRefGoogle Scholar
  10. Izidoro LF, Sobrinho JC, Mendes MM, Costa TR, Grabner AN, Rodrigues VM, da Silva SL, Zanchi FB, Zuliani JP, Fernandes CF, Calderon LA, Stábeli RG, Soares AM (2014) Snake venom l-amino acid oxidases: trends in pharmacology and biochemistry. Biomed Res Int 2014:1–19.  https://doi.org/10.1155/2014/196754 CrossRefGoogle Scholar
  11. Jung SK, Mai A, Iwamoto M, Arizono N, Fujimoto D, Sakamaki K, Yonehara S (2000) Purification and cloning of an apoptosis-inducing protein derived from fish infected with Anisakis simplex, a causative nematode of human anisakiasis. J Immunol 165:1491–1497CrossRefGoogle Scholar
  12. Kasai K, Ishikawa T, Komata T, Fukuchi K, Chiba M, Nozaka H, Nakamura T, Sato T, Miura T (2010) Novel l-amino acid oxidase with antibacterial activity against methicillin-resistant Staphylococcus aureus isolated from epidermal mucus of the flounder Platichthys stellatus. FEBS J 277:453–465.  https://doi.org/10.1111/j.1742-4658.2009.07497.x CrossRefGoogle Scholar
  13. Kasai K, Ishikawa T, Nakamura T, Miura T (2015) Antibacterial properties of l-amino acid oxidase: mechanisms of action and perspectives for therapeutic applications. Appl Microbiol Biotechnol 99:7847–7857.  https://doi.org/10.1007/s00253-015-6844-2 CrossRefGoogle Scholar
  14. Katzenback B (2015) Antimicrobial peptides as mediators of innate immunity in teleosts. Biology (Basel) 4:607–639.  https://doi.org/10.3390/biology4040607 Google Scholar
  15. Kitani Y, Tsukamoto C, Zhang G, Nagai H, Ishida M, Ishizaki S, Shimakura K, Shiomi K, Nagashima Y (2007) Identification of an antibacterial protein as l-amino acid oxidase in the skin mucus of rockfish Sebastes schlegeli. FEBS J 274:125–136.  https://doi.org/10.1111/j.1742-4658.2006.05570.x CrossRefGoogle Scholar
  16. Kitani Y, Kikuchi N, Zhang G, Ishizaki S, Shimakura K, Shiomi K, Nagashima Y (2008) Antibacterial action of l-amino acid oxidase from the skin mucus of rockfish Sebastes schlegelii. Comp Biochem Physiol B Biochem Mol Biol 149:394–400CrossRefGoogle Scholar
  17. Kitani Y, Ishida M, Ishizaki S, Nagashima Y (2010) Discovery of serum l-amino acid oxidase in the rockfish Sebastes schlegeli: isolation and biochemical characterization. Comp. Biochem Physiol B Biochem Mol Biol 157:351–356.  https://doi.org/10.1016/j.matchemphys.2015.05.051 CrossRefGoogle Scholar
  18. Kitani Y, Fernandes JMO, Kiron V (2015) Identification of the Atlantic cod l-amino acid oxidase and its alterations following bacterial exposure. Dev Comp Immunol 50:116–120.  https://doi.org/10.1016/j.dci.2015.02.007 CrossRefGoogle Scholar
  19. Koppang EO, Fischer U, Moore L, Tranulis MA, Dijkstra JM, Köllner B, Aune L, Jirillo E, Hordvik I (2010) Salmonid T cells assemble in the thymus, spleen and in novel interbranchial lymphoid tissue. J Anat 217:728–739.  https://doi.org/10.1111/j.1469-7580.2010.01305.x CrossRefGoogle Scholar
  20. Lee PT, Bird S, Zou J, Martin SAM (2017) Phylogeny and expression analysis of C-reactive protein (CRP) and serum amyloid-P (SAP) like genes reveal two distinct groups in fish. Fish Shellfish Immunol 65:42–51.  https://doi.org/10.1016/j.fsi.2017.03.037 CrossRefGoogle Scholar
  21. Lehrer RI (2004) Primate defensins. Nat Rev Microbiol 2:727–738.  https://doi.org/10.1038/nrmicro976 CrossRefGoogle Scholar
  22. Løvoll M, Wiik-Nielsen CR, Tunsjø HS, Colquhoun D, Lunder T, Sørum H, Grove S (2009) Atlantic salmon bath challenged with Moritella viscosa pathogen invasion and host response. Fish Shellfish Immunol 26:877–884.  https://doi.org/10.1016/j.fsi.2009.03.019 CrossRefGoogle Scholar
  23. Løvoll M, Austbø L, Jørgensen JB, Rimstad E, Frost P (2011) Transcription of reference genes used for quantitative RT-PCR in Atlantic salmon is affected by viral infection. Vet Res 42:8.  https://doi.org/10.1186/1297-9716-42-8 CrossRefGoogle Scholar
  24. Marshall OJ (2004) PerlPrimer: cross-platform, graphical primer design for standard, bisulphite and real-time PCR. Bioinformatics 20:2471–2472.  https://doi.org/10.1093/bioinformatics/bth254 CrossRefGoogle Scholar
  25. Masso-Silva JA, Diamond G (2014) Antimicrobial peptides from fish. Pharmaceuticals 7:265–310.  https://doi.org/10.3390/ph7030265 CrossRefGoogle Scholar
  26. Nagashima Y, Tsukamoto C, Kitani Y, Ishizaki S, Nagai H, Yanagimoto T (2009) Isolation and cDNA cloning of an antibacterial l-amino acid oxidase from the skin mucus of the great sculpin Myoxocephalus polyacanthocephalus. Comp Biochem Physiol B Biochem Mol Biol 154:55–61.  https://doi.org/10.1016/j.cbpb.2009.05.006 CrossRefGoogle Scholar
  27. Nsrelden RM, Horiuchi H, Furusawa S (2017) Expression of ayu antimicrobial peptide genes after LPS stimulation. J Vet Med Sci 79:1072–1080.  https://doi.org/10.1292/jvms.16-0609 CrossRefGoogle Scholar
  28. Nymo IH, Seppola M, Al Dahouk S, Bakkemo KR, Jiménez de Bagüés MP, Godfroid J, Larsen AK (2016) Experimental challenge of Atlantic cod (Gadus morhua) with a Brucella pinnipedialis strain from hooded seal (Cystophora cristata). PLoS One 11:e0159272.  https://doi.org/10.1371/journal.pone.0159272 CrossRefGoogle Scholar
  29. Pazgier M, Ericksen B, Ling M, Toth E, Shi J, Li X, Galliher-Beckley A, Lan L, Zou G, Zhan C, Yuan W, Pozharski E, Lu W (2013) Structural and functional analysis of the pro-domain of human cathelicidin, LL-37. Biochemistry 52:1547–1558.  https://doi.org/10.1021/bi301008r CrossRefGoogle Scholar
  30. Primor N, Tu AT (1980) Conformation of pardaxin, the toxin of the flatfish Pardachirus marmoratus. Biochim Biophys Acta Protein Struct 626:299–306.  https://doi.org/10.1016/0005-2795(80)90124-5 CrossRefGoogle Scholar
  31. Rakers S, Gebert M, Uppalapati S, Meyer W, Maderson P, Sell AF, Kruse C, Paus R (2010) “Fish matters”: the relevance of fish skin biology to investigative dermatology. Exp Dermatol 19:313–324.  https://doi.org/10.1111/j.1600-0625.2009.01059.x CrossRefGoogle Scholar
  32. Rakers S, Niklasson L, Steinhagen D, Kruse C, Schauber J, Sundell K, Paus R (2013) Antimicrobial peptides (AMPs) from fish epidermis: perspectives for investigative dermatology. J Invest Dermatol 133:1140–1149.  https://doi.org/10.1038/jid.2012.503 CrossRefGoogle Scholar
  33. Rombout JHWM, Yang G, Kiron V (2014) Adaptive immune responses at mucosal surfaces of teleost fish. Fish Shellfish Immunol 40:634–643.  https://doi.org/10.1016/j.fsi.2014.08.020 CrossRefGoogle Scholar
  34. Romo RM, Pérez-Martínez D, Ferrer CC (2016) Innate immunity in vertebrates: an overview. Immunology 148:125–139.  https://doi.org/10.1111/imm.12597 CrossRefGoogle Scholar
  35. Ronquist F, Teslenko M, van der Mark P, Ayres DL, Darling A, Höhna S, Larget B, Liu L, Suchard MA, Huelsenbeck JP (2012) MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst Biol 61:539–542.  https://doi.org/10.1093/sysbio/sys029 CrossRefGoogle Scholar
  36. Ruangsri J, Kitani Y, Kiron V, Lokesh J, Brinchmann MF, Karlsen BO, Fernandes JMO (2013) A novel beta-defensin antimicrobial peptide in Atlantic cod with stimulatory effect on phagocytic activity. PLoS One 8:e62302.  https://doi.org/10.1371/journal.pone.0062302 CrossRefGoogle Scholar
  37. Schmitt P, Wacyk J, Morales-Lange B, Rojas V, Guzmán F, Dixon B, Mercado L (2015) Immunomodulatory effect of cathelicidins in response to a β-glucan in intestinal epithelial cells from rainbow trout. Dev Comp Immunol 51:160–169.  https://doi.org/10.1016/j.dci.2015.03.007 CrossRefGoogle Scholar
  38. Shai Y (1999) Mechanism of the binding, insertion and destabilization of phospholipid bilayer membranes by alpha-helical antimicrobial and cell non-selective membrane-lytic peptides. Biochim Biophys Acta 1462:55–70CrossRefGoogle Scholar
  39. Shai Y (2002) Mode of action of membrane active antimicrobial peptides. Biopolymers 66:236–248.  https://doi.org/10.1002/bip.10260 CrossRefGoogle Scholar
  40. Shai Y, Fox J, Caratsch C, Shih YL, Edwards C, Lazarovici P (1988) Sequencing and synthesis of pardaxin, a polypeptide from the Red Sea Moses sole with ionophore activity. FEBS Lett 242:161–166CrossRefGoogle Scholar
  41. Shiomi K, Igarashi T, Yokota H, Nagashima Y, Ishida M (2000) Isolation and structures of grammistins, peptide toxins from the skin secretion of the soapfish Grammistes sexlineatus. Toxicon 38:91–103CrossRefGoogle Scholar
  42. Stafford JL, Ellestad KK, Magor KE, Belosevic M, Magor BG (2003) A toll-like receptor (TLR) gene that is up-regulated in activated goldfish macrophages. Dev Comp Immunol 27:685–698CrossRefGoogle Scholar
  43. Sugiyama N, Araki M, Ishida M, Nagashima Y, Shiomi K (2005) Further isolation and characterization of grammistins from the skin secretion of the soapfish Grammistes sexlineatus. Toxicon 45:595–601.  https://doi.org/10.1016/j.toxicon.2004.12.021 CrossRefGoogle Scholar
  44. Tort L, Balasch JC, Mackenzie S (2003) Fish immune system. A crossroads between innate and adaptive responses. Inmunologia 22:277–286Google Scholar
  45. Uzzell T, Stolzenberg ED, Shinnar AE, Zasloff M (2003) Hagfish intestinal antimicrobial peptides are ancient cathelicidins. Peptides 24:1655–1667.  https://doi.org/10.1016/j.peptides.2003.08.024 CrossRefGoogle Scholar
  46. Valente LMP, Bower NI, Johnston IA (2012) Postprandial expression of growth-related genes in Atlantic salmon (Salmo salar L.) juveniles fasted for 1 week and fed a single meal to satiation. Br J Nutr 108:2148–2157.  https://doi.org/10.1017/S0007114512000396 CrossRefGoogle Scholar
  47. Vallon O (2000) New sequence motifs in flavoproteins: evidence for common ancestry and tools to predict structure. Proteins 38:95–114CrossRefGoogle Scholar
  48. Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A, Speleman F (2002) Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol.  https://doi.org/10.1186/gb-2002-3-7-research0034 Google Scholar
  49. Vasanth G, Kiron V, Kulkarni A, Dahle D, Lokesh J, Kitani Y (2015) A microbial feed additive abates intestinal inflammation in Atlantic salmon. Front Immunol  https://doi.org/10.3389/fimmu.2015.00409 Google Scholar
  50. Wang F, Li R, Xie M, Li A (2011) The serum of rabbitfish (Siganus oramin) has antimicrobial activity to some pathogenic organisms and a novel serum l-amino acid oxidase is isolated. Fish Shellfish Immunol 30:1095–1108.  https://doi.org/10.1016/j.fsi.2011.02.004 CrossRefGoogle Scholar
  51. Xhindoli D, Pacor S, Benincasa M, Scocchi M, Gennaro R, Tossi A (2016) The human cathelicidin LL-37—a pore-forming antibacterial peptide and host-cell modulator. Biochim Biophys Acta Biomembr 1858:546–566.  https://doi.org/10.1016/j.bbamem.2015.11.003 CrossRefGoogle Scholar
  52. Zanetti M (2004) Cathelicidins, multifunctional peptides of the innate immunity. J Leukoc Biol 75:39–48.  https://doi.org/10.1189/jlb.0403147 CrossRefGoogle Scholar
  53. Zanetti M, Gennaro R, Romeo D (1995) Cathelicidins: a novel protein family with a common proregion and a variable C-terminal antimicrobial domain. FEBS Lett 374:1–5CrossRefGoogle Scholar
  54. Zou J, Secombes CJ (2016) The function of fish cytokines. Biology 5:23.  https://doi.org/10.3390/biology5020023 CrossRefGoogle Scholar
  55. Zou J, Mercier C, Koussounadis A, Secombes C (2007) Discovery of multiple beta-defensin like homologues in teleost fish. Mol Immunol 44:638–647.  https://doi.org/10.1016/j.molimm.2006.01.012 CrossRefGoogle Scholar

Copyright information

© Japanese Society of Fisheries Science 2019

Authors and Affiliations

  1. 1.Noto Marine Laboratory, Institute of Nature and Environmental TechnologyKanazawa UniversityHosuJapan
  2. 2.Research Unit in Environmental and Evolutionary BiologyUniversity of NamurNamurBelgium
  3. 3.Faculty of Biosciences and AquacultureNord UniversityBodøNorway

Personalised recommendations