Advertisement

Pharmacokinetics of enrofloxacin and its metabolite ciprofloxacin in Pacific white shrimp Litopenaeus vannamei after multiple-dose oral administration

  • Rongrong Ma
  • Liang Huang
  • Wenjuan Wei
  • Yuan Wang
  • Xiong Zou
  • Junfang Zhou
  • Xincang Li
  • Wenhong Fang
Original Article Aquaculture

Abstract

The present study was designed to explore pharmacokinetics (PK) of enrofloxacin and its metabolite ciprofloxacin in Pacific white shrimp Litopenaeus vannamei after multiple-dose oral administration of enrofloxacin (30 mg/kg dose per 12 h and continuous feeding for 3 days). Enrofloxacin and ciprofloxacin concentrations in hemolymph, hepatopancreas, and muscle of the shrimp were simultaneously determined by high-performance liquid chromatography. PK parameters were analyzed based on statistical moment theory. Meanwhile, the relationship of pharmacokinetics/pharmacodynamics (PK/PD) was established based on drug concentration of hemolymph and in vitro antibacterial activity (MIC value). Results showed faster absorption of enrofloxacin in hemolymph (Tmax = 1 h) and muscles (Tmax = 1 h) than that in hepatopancreas (Tmax = 3 h) after the first oral administration. In multiple-dose oral administration, slight accumulation of enrofloxacin occurred in the hemolymph and hepatopancreas, while in the muscle, enrofloxacin concentration showed a significant decline following multiple administration. Tissue distribution of enrofloxacin and ciprofloxacin both followed the order hepatopancreas > hemolymph > muscle, with significantly higher ciprofloxacin concentration in hepatopancreas than in hemolymph (approximately 10-fold) and muscles (approximately 50-fold), indicating that the hepatopancreas is the main organ involved in metabolism of enrofloxacin in Pacific white shrimp. After multiple-dose administration, Cmax/MIC and AUC0–24/MIC values showed that the therapeutic regimen in this study could be remarkably effective in prevention and treatment of Vibrio infection in Pacific white shrimp.

Keywords

Pacific white shrimp Pharmacokinetics Enrofloxacin Ciprofloxacin Multiple oral administration In vitro efficacy 

Notes

Acknowledgements

This study was supported financially by National Key Research and Development Program of China (no. 2017YFC1600704), and Central Public-interest Scientific Institution Basal Research Fund, CAFS (no. 2017HY-ZD1006), and Shanghai Agriculture Applied Technology Development Program of China (no. G20140304).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflicts of interest concerning this article.

References

  1. Aguirre-Guzmán G, Sánchez-Martínez JG, Pérez-Castañeda R, Palacios-Monzón A, Trujillo-Rodríguez T, Cruz-Hernández NIDL (2010) Pathogenicity and infection route of Vibrio parahaemolyticus in American White Shrimp, Litopenaeus vannamei. J World Aquac Soc 41:464–470CrossRefGoogle Scholar
  2. Barron MG, Hansen SC, Ball T (1991) Pharmacokinetics and metabolism of triclopyr in the crayfish (Procambarus clarki). Drug Metab Dispos Biol Fate Chem 19:163PubMedGoogle Scholar
  3. Bergan T, Dalhoff PDA, Rohwedder R (1988) Pharmacokinetics of ciprofloxacin. Infection 16:S3–S13CrossRefPubMedGoogle Scholar
  4. Della RG, Di SA, Malvisi J, Sello M (2004) The disposition of enrofloxacin in seabream (Sparus aurata L.) after single intravenous injection or from medicated feed administration. Aquaculture 232:53–62CrossRefGoogle Scholar
  5. Fang WH, Zhou S, Yu HJ, Hu LL, Zhou K, Liang SC (2007) Pharmacokinetics and tissue distribution of enrofloxacin and its metabolite ciprofloxacin in Scylla serrata following oral gavage at two salinities. Aquaculture 272:180–187CrossRefGoogle Scholar
  6. Gore SR, Harms CA, Kukanich B, Forsythe J, Lewbart GA, Papich MG (2005) Enrofloxacin pharmacokinetics in the European cuttlefish, Sepia officinalis, after a single i.v. injection and bath administration. J Vet Pharmacol Ther 28:433–439CrossRefPubMedGoogle Scholar
  7. Han JE, Mohney LL, Tang KFJ, Pantoja CR, Lightner DV (2015) Plasmid mediated tetracycline resistance of Vibrio parahaemolyticus associated with acute hepatopancreatic necrosis disease (AHPND) in shrimps. Aquac Rep 2:17–21CrossRefGoogle Scholar
  8. Intorre L, Cecchini S, Bertini S, Cognetti Varriale AM, Soldani G, Mengozzi G (2000) Pharmacokinetics of enrofloxacin in the seabass (Dicentrarchus labrax). Aquaculture 182:49–59CrossRefGoogle Scholar
  9. Jacobs MR (2001) Optimisation of antimicrobial therapy using pharmacokinetic and pharmacodynamic parameters. Clin Microbiol Infec Offl Publ Eur Soc Clin Microbiol Infect Dis 7:589–596Google Scholar
  10. Jr OR, Bhavnani SM, Ambrose PG (2005) Assessment of pharmacokinetic-pharmacodynamic target attainment of gemifloxacin against Streptococcus pneumoniae. Diagn Microbiol Infect Dis 51:45–49CrossRefGoogle Scholar
  11. Kalpana S, Aggarwal M, Srinivasa RG, Malik JK (2012) Effects of aflatoxin B1 on tissue residues of enrofloxacin and its metabolite ciprofloxacin in broiler chickens. Environ Toxicol Pharmacol 33:121–126CrossRefPubMedGoogle Scholar
  12. Kim MS, Lim JH, Park BK, Hwang YH, Yun HI (2006) Pharmacokinetics of enrofloxacin in Korean catfish (Silurus asotus). J Vet Pharmacol Ther 29:397–402CrossRefPubMedGoogle Scholar
  13. Koc F, Uney K, Atamanalp M, Tumer I, Kaban G (2009) Pharmacokinetic disposition of enrofloxacin in brown trout (Salmo trutta fario) after oral and intravenous administrations. Aquaculture 295:142–144CrossRefGoogle Scholar
  14. Lewbart G, Vaden S, Deen J, Manaugh C, Whitt D, Doi A, Smith T, Flammer K (1997) Pharmacokinetics of enrofloxacin in the red pacu (Colossoma brachypomum) after intramuscular, oral and bath administration. J Vet Pharmacol Therapeut 20:124–128CrossRefGoogle Scholar
  15. Liu CH, Cheng W, Hsu JP, Chen JC (2004) Vibrio alginolyticus infection in the white shrimp Litopenaeus vannamei confirmed by polymerase chain reaction and 16S rDNA sequencing. Dis Aquat Organ 61:169CrossRefPubMedGoogle Scholar
  16. Lode H, Borner K, Koeppe P (1998) Pharmacodynamics of fluoroquinolones. Clin Infect Dis Offl Publ Infect Dis Soc Am 27:33–39CrossRefGoogle Scholar
  17. Lomelí-Ortega CO, Martínez-Díaz SF (2014) Phage therapy against Vibrio parahaemolyticus infection in the whiteleg shrimp (Litopenaeus vannamei) larvae. Aquaculture 434:208–211CrossRefGoogle Scholar
  18. Ma R, Wang Y, Zou X, Hu K, Sun B, Fang W, Fu G, Yang X (2017a) Pharmacokinetics of sulfamethoxazole and trimethoprim in Pacific white shrimp, Litopenaeus vannamei, after oral administration of single-dose and multiple-dose. Environ Toxicol Pharmacol 52:90CrossRefPubMedGoogle Scholar
  19. Ma R, Yang L, Ren T, Dong Y, Liu T, Zhuang P, Fang W, Yang X, Hu K (2017b) Enrofloxacin pharmacokinetics in Takifugu flavidus after oral administration at three salinity levels. Aquac Res 48:4545–4553CrossRefGoogle Scholar
  20. Park ED, Lightner DV, Milner N, Mayersohn M, Park DL, Gifford JM, Bell TA (1995) Exploratory bioavailability and pharmacokinetic studies of sulphadimethoxine and ormetoprim in the penaeid shrimp, Penaeus vannamei. Aquaculture 130:113–128CrossRefGoogle Scholar
  21. Phu TM, Douny C, Scippo ML, Pauw ED, Thinh NQ, Huong DTT, Vinh HP, Phuong NT, Dalsgaard A (2015) Elimination of enrofloxacin in striped catfish (Pangasianodon hypophthalmus) following on-farm treatment. Aquaculture 438:1–5CrossRefGoogle Scholar
  22. Rao GS, Ramesh S, Ahmad AH, Tripathi HC, Sharma LD, Malik JK (2002) Disposition kinetics of enrofloxacin and ciprofloxacin following intravenous administration of enrofloxacin in goats. Small Ruminant Res 44:9–15CrossRefGoogle Scholar
  23. Roque A, Gomez-Gil B (2003) Therapeutic effects of enrofloxacin in an experimental infection with a luminescent Vibrio harveyi in Artemia franciscana Kellog 1906. Aquaculture 220:37–42CrossRefGoogle Scholar
  24. Roque A, Molina-Aja A, Bolán-Mejı́ AC, Gomez-Gil B (2001) In vitro susceptibility to 15 antibiotics of vibrios isolated from penaeid shrimps in Northwestern Mexico. Int J Antimicrob Agents 17:383–387CrossRefPubMedGoogle Scholar
  25. Sotorodriguez S, Armenta M, Gomezgil B (2006) Effects of enrofloxacin and florfenicol on survival and bacterial population in an experimental infection with luminescent Vibrio campbellii in shrimp larvae of Litopenaeus vannamei. Aquaculture 255:48–54CrossRefGoogle Scholar
  26. Stoffregen DA, Wooster GA, Bustos PS, Bowser PR, Babish JG (2010) Multiple route and dose pharmacokinetics of enrofloxacin in juvenile Atlantic salmon. J Vet Pharmacol Ther 20:111–123CrossRefGoogle Scholar
  27. Su Z, Hui X, Chen L (2011) In vitro antibacterial effect of chinese herbal medicine against Aeromonas hydrophila. Chin J Vet Med 134:233–239Google Scholar
  28. Tang J, Yang XL, Zheng ZL, Yu WJ, Hu K, Yu HJ (2006) Pharmacokinetics and the active metabolite of enrofloxacin in Chinese mitten-handed crab (Eriocheir sinensis). Aquaculture 260:69–76CrossRefGoogle Scholar
  29. Tyczkowska K, Hedeen KM, Aucoin DP, Aronson AL (1989) High-performance liquid chromatographic method for the simultaneous determination of enrofloxacin and its primary metabolite ciprofloxacin in canine serum and prostatic tissue. J Chromatogr 493:337–346CrossRefPubMedGoogle Scholar
  30. Vaccaro E, Giorgi MV, Mengozzi G, Gervasi PG (2003) Inhibition of cytochrome P450 enzymes by enrofloxacin in the sea bass (Dicentrarchus labrax). Aquat Toxicol 62:27–33CrossRefPubMedGoogle Scholar
  31. Watts JL (2008) Performance standards for antimicrobial disk and dilution susceptibilty tests for bacteria isolated from animals: approved standard. Clinical and Laboratory Standards InstituteGoogle Scholar
  32. Zhou J, Fang W, Yang X, Zhou S, Hu L, Li X, Qi X, Su H, Xie L (2012) A nonluminescent and highly virulent Vibrio harveyi strain is associated with “bacterial white tail disease” of Litopenaeus vannamei Shrimp. PLoS One 7:e29961CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Japanese Society of Fisheries Science 2018

Authors and Affiliations

  • Rongrong Ma
    • 1
    • 2
    • 3
    • 4
  • Liang Huang
    • 1
    • 2
    • 3
    • 4
  • Wenjuan Wei
    • 1
    • 2
    • 3
    • 4
  • Yuan Wang
    • 4
  • Xiong Zou
    • 4
  • Junfang Zhou
    • 4
  • Xincang Li
    • 4
  • Wenhong Fang
    • 4
  1. 1.National Demonstration Center for Experimental Fisheries Science EducationShanghai Ocean UniversityShanghaiPeople’s Republic of China
  2. 2.National Pathogen Collection Center for Aquatic AnimalsShanghaiPeople’s Republic of China
  3. 3.Shanghai Collaborative Innovation for Aquatic Animal Genetics and BreedingShanghaiPeople’s Republic of China
  4. 4.Key Laboratory of East China Sea Fishery Resources Exploitation, Ministry of Agriculture, East China Sea Fisheries Research InstituteChinese Academy of Fishery SciencesShanghaiPeople’s Republic of China

Personalised recommendations