Fisheries Science

, Volume 83, Issue 5, pp 661–670 | Cite as

The development of the Norwegian wrasse fishery and the use of wrasses as cleaner fish in the salmon aquaculture industry

Review Article

Abstract

Norway leads the world aquaculture production of Atlantic salmon Salmo salar and farmed Norwegian Atlantic salmon is currently consumed around the globe. However, sea lice infestation is a major problem faced by the salmon aquaculture industry in Norway and elsewhere. The use of wild-caught cleaner fish, mainly wrasses, has been recommended over the other available methods as the most economical and environmentally friendly option to control sea lice infestation in salmon farming. Here, we review the development of the Norwegian wrasse fishery and the use of wrasses as cleaner fish. In this document, we address the sea lice problem and introduce the main wrasse species employed as cleaner fish, document the cleaning behaviour of wrasses, present the development of a new wrasse fishery associated with the salmon aquaculture industry, and finally, we identify the main challenges associated with the intensive use of wild-caught cleaner wrasses and provide some insight for future directions of the wrasse fishery and further development of aquaculture techniques to supply salmon facilities with domesticated cleaner fish.

Keywords

Norway Cleanerfish Fishing Symbiosis Biological control Sea lice 

Notes

Acknowledgements

This work was funded under the Havkyst program of the Norwegian Research Council (Project #234328/MO “Adaptation or plasticity as response to large scale translocations and harvesting over a climatic gradient in the marine ecosystem?”). We would like thank Sigurd Heiberg Espeland for providing the data for Fig. 1. and to David Villegas-Ríos for the pictures of goldsinny, ballan and rock cook wrasse in Fig. 2. We would also like also to thank Sigurd Heiberg Espeland, Mana Naito and two anonymous reviewers for their valuable comments of previous versions of the manuscript.

References

  1. 1.
    FAO (2014) Fishery and aquaculture statistics. Yearbook. Food and Agriculture Organization of the United Nations, RomeGoogle Scholar
  2. 2.
    Heuch PA, Bjørn PA, Finstad B, Holst JC, Asplin L, Nilsen F (2005) A review of the Norwegian national action plan against salmon lice on salmonids: the effect on wild salmonids. Aquaculture 250:535CrossRefGoogle Scholar
  3. 3.
    Hersoug B (2015) The greening of Norwegian salmon aquaculture. Marit Stud 14:16CrossRefGoogle Scholar
  4. 4.
    Oppedal F, Dempster T, Stien LS (2010) Environmental drivers of Atlantic salmon behaviour in sea-cages: a review. Aquaculture 311:1–18CrossRefGoogle Scholar
  5. 5.
    Taranger GL, Karlsen Ø, Bannister RJ, Glover KA, Husa V, Karlsbakk E, Kvamme BO, Boxaspen KK, Bjørn PA, Finstad B, Madhun AS, Morton HC, Svåsand T (2015) Risk assessment of the environmental impact of Norwegian Atlantic salmon farming. ICES J Mar Sci 72:997–1021CrossRefGoogle Scholar
  6. 6.
    Naylor RL, Goldburg RJ, Primavera JH, Kautsky N, Beveridge MCM, Clay J, Folke C, Lubchencol J, Mooney H, Troell M (2000) Effect of aquaculture on world fish supplies. Nature 405:1017–1024CrossRefPubMedGoogle Scholar
  7. 7.
    Naylor RL, Hindar K, Fleming IA, Goldburg R, Williams S, Volpe J, Whoriskey F, Eagle J, Kelso D, Mangel M (2005) Fugitive salmon: assessing risks from aquaculture escapes. Bioscience 55:427–437CrossRefGoogle Scholar
  8. 8.
    Bayley J (2014) Looking for sustainable solutions in salmon aquaculture. Nordic J Appl Ethics 8:22–40Google Scholar
  9. 9.
    Karlsson S, Diserud OH, Fiske P, Hindar K (2016) Widespread genetic introgression of escaped farmed Atlantic salmon in wild salmon populations. ICES J Mar Sci 73:2488–2498CrossRefGoogle Scholar
  10. 10.
    Jones S, Johnson S (2015) Sea lice monitoring and non-chemical measures A: biology of sea lice, Lepeophtheirus salmonis and Caligus spp., in western and eastern Canada. DFO Can Sci Advis Sec Res Doc 2014/019, OttawaGoogle Scholar
  11. 11.
    Todd CD (2007) The copepod parasite (Lepeophtheirus salmonis (Krøyer), Caligus elongatus Nordmann) interactions between wild and farmed Atlantic salmon (Salmo salar L.) and wild sea trout (Salmo trutta L.): a mini review. J Plankt Res 29 (Suppl 1):i61–i71Google Scholar
  12. 12.
    Kabata Z (1979) Parasitic copepoda of British fishes. Ray Society, LondonGoogle Scholar
  13. 13.
    Costello MJ (2006) Ecology of sea lice parasitic on farmed and wild fish. Trends Parasitol 22(10):475–483CrossRefPubMedGoogle Scholar
  14. 14.
    Hevrøy EM, Boxaspen K, Oppedal F, Taranger GL, Hom JC (2003) The effect of artificial light treatment and depth on the infestation of the sea louse Lepeophtheirus salmonis on Atlantic salmon (Salmo salar L.) culture. Aquaculture 220:1–14CrossRefGoogle Scholar
  15. 15.
    Glover KA, Hamre LA, Skaala Ø, Nilsen F (2004) A comparison of sea louse (Lepeophtheirus salmonis) infection levels in farmed and wild Atlantic salmon (Salmo salar L.) stocks. Aquaculture 232:41–52CrossRefGoogle Scholar
  16. 16.
    Costello MJ (2009) The global economic cost of sea lice to the salmonid farming industry. J Fish Dis 32:115–118CrossRefPubMedGoogle Scholar
  17. 17.
    Iversen A (2016) Norway’s salmon farmers spent over NOK 5bn on sea lice treatment in 2015. Undercurrent News 2016/03/02Google Scholar
  18. 18.
    Torrissen O, Jones S, Asche F, Guttormsen A, Skilbrei OT, Nilsen F, Horsberg TE, Jackson D (2013) Salmon lice—impact on wild salmonids and salmon aquaculture. J Fish Dis 36:171–194CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Liu Y, Bjelland HV (2014) Estimating the cost of sea lice control strategy in Norway. Prev Vet Med 117:469–477CrossRefPubMedGoogle Scholar
  20. 20.
    Taylor G (2016) Salmon die in huge numbers after alternative lice treatment. NorwayToday 2016(11/26):20Google Scholar
  21. 21.
    Treasurer JW (2012) Diseases of north European wrasse (Labridae) and possible interactions with cohabited farmed salmon, Salmo salar L. J Fish Dis 35:555–562CrossRefPubMedGoogle Scholar
  22. 22.
    Deady S, Varian SJA, Fives JM (1995) The use of cleaner-fish to control sea lice on two Irish salmon (Salmo salar) farms with particular reference to wrasse behaviour in salmon cages. Aquaculture 131:73–90CrossRefGoogle Scholar
  23. 23.
    Groner ML, Gettinby G, Revie CW (2013) Use of agent-based modelling to predict benefits of cleaner fish in controlling sea lice, Lepeophtheirus salmonis, infestations on farmed Atlantic salmon, Salmo salar L. J Fish Dis 36:195–208CrossRefPubMedGoogle Scholar
  24. 24.
    Vaughan DB, Grutter AS, Costello MJ, Hutson KS (2016) Cleaner fishes and shrimp diversity and a re-evaluation of cleaning symbioses. Fish Fish. doi: 10.1111/faf.12198 Google Scholar
  25. 25.
    Skiftesvik AB, Bjelland RM, Durif CMF, Johansen IS, Browman HI (2013) Delousing of Atlantic salmon (Salmo salar) by cultured vs. wild ballan wrasse (Labrus bergylta). Aquaculture 402:113–118CrossRefGoogle Scholar
  26. 26.
    Parenti P, Randall JE (2011) Checklist of the species of the families Labridae and Scaridae: an update. Smith Bull 13:29–44Google Scholar
  27. 27.
    Costello MJ (1991) Review of the biology of wrasse (Labridae: Pisces) in northern Europe. Prog Underwater Sci 16:29–51Google Scholar
  28. 28.
    Quignard J-P, Pras A (1986) Labridae. In: Whitehead PJP, Bauchot M-L, Hureau J-C, Nielsen J, Tortonese E (eds) Fishes of the North-eastern Atlantic and the mediterranean, vol II. UNESCO, Paris, pp 919–942Google Scholar
  29. 29.
    Sayer MDJ, Treasurer JW (1996) North European wrasse: identification, distribution and habitat. In: Sayer MDJ, Treasurer JW, Costello MJ (eds) Wrasse: biology and use in aquaculture. Fishing New Books, Oxford, pp 3–12Google Scholar
  30. 30.
    Darwall WRT, Costello MJ, Donnelly R, Lysaght S (1992) Implications of life-history strategies for a new wrasse fishery. J Fish Biol 41:111–123CrossRefGoogle Scholar
  31. 31.
    Skiftesvik AB, Durif CMF, Bjelland RM, Browman HI (2015) Distribution and habitat preferences of five species of wrasse (Family Labridae) in a Norwegian fjord. ICES J Mar Sci 72:890–899CrossRefGoogle Scholar
  32. 32.
    Maroni P, Andersen PA (1996) Distribution and abundance of wrasse in an area of northern Norway. In: Sayer MDJ, Treasurer JW, Costello MJ (eds) Wrasse: biology and use in aquaculture. Fishing New Books, Oxford, pp 70–73Google Scholar
  33. 33.
    Knutsen H, Jorde PE, Blanco Gonzalez E, Robalo J, Albretsen J, Almada V (2013) Climate change and genetic structure of leading edge and rear end populations in a northwards shifting marine fish species, the corkwing wrasse (Symphodus melops). PLoS One 8(6):e67492CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Barceló C, Ciannelli L, Olsen EM, Johannesen T, Knutsen H (2016) Eight decades of sampling reveal a contemporary novel fish assemblage in coastal nursery habitat. Glob Chang Biol 22:1155–1167CrossRefPubMedGoogle Scholar
  35. 35.
    Larsen T (2015) Effects of marine protected areas and selective fishing on abundance, age and size structure of goldsinny wrasse (Ctenolabrus rupestris) populations. MSc. Dissertation. University of Oslo, Oslo, NorwayGoogle Scholar
  36. 36.
    Muncaster S, Andersson E, Kjesbu OS, Taranger GL, Skiftesvik AB, Norberg B (2010) The reproductive cycle of female ballan wrasse Labrus bergylta in high latitude, temperate waters. J Fish Biol 77:494–511PubMedGoogle Scholar
  37. 37.
    Costello MJ, Darwall WRT, Lysaght S (1995). Activity patterns of North European wrasse (Pisces, Labridae) species and precision of diver survey techniques. In: Eleftheriou A, Ansell AD, Smith CJ (eds) Biology and ecology of shallow coastal waters. Proceedings of the 28th European Marine Biological Symposium, Crete, Greece, 23–28 September 1993. International Symposium Series. Olsen & Olsen, Copenhagen, pp 343–350Google Scholar
  38. 38.
    Sayer MDJ, Davenport J (1996) Hypometabolism in torpid goldsinny wrasse subjected to rapid reductions in seawater temperature. J Fish Biol 49:64–75CrossRefGoogle Scholar
  39. 39.
    Bjelland R, Simensen L, Kvenseth PG (1996) Successful survival of wrasse through winter in submersible netcages in a fjord in western Norway. In: Sayer MDJ, Treasurer JW, Costello MJ (eds) Wrasse: biology and use in aquaculture. Fishing New Books, Oxford, pp 265–271Google Scholar
  40. 40.
    Sayer MDJ, Reader JP (1996) Exposure of goldsinny, rock cook and corkwing wrasse to low temperature and low salinity: survival, blood physiology and seasonal variation. J Fish Biol 49:41–63CrossRefGoogle Scholar
  41. 41.
    Sayer MDJ, Reader JP, Davenport J (1996) Survival, osmoregulation and oxygen consumption of wrasse at low salinity and/or low temperature. In: Sayer MDJ, Treasurer JW, Costello MJ (eds) Wrasse: biology and use in aquaculture. Fishing New Books, Oxford, pp 119–135Google Scholar
  42. 42.
    Halvorsen KT, Sørdalen TK, Durif C, Knutsen H, Olsen EM, Skiftesvik AB, Rustand TE, Bjelland RM, Vøllestad LA (2016) Male-biased sexual size dimorphism in the nest building corkwing wrasse (Symphodus melops): implications for a size regulated fishery. ICES J Mar Sci 73:2586–2594CrossRefGoogle Scholar
  43. 43.
    Sayer MDJ, Gibson RN, Atkinson RJA (1996) Seasonal, sexual and geographical variation in the biology of goldsinny, corkwing and rock cook on the west coast of Scotland. In: Sayer MDJ, Treasurer JW, Costello MJ (eds) Wrasse: biology and use in aquaculture. Fishing New Books, Oxford, pp 13–46Google Scholar
  44. 44.
    Blanco Gonzalez E, Knutsen H, Jorde PE (2016) Habitat discontinuities separate genetically divergent populations of a rocky shore marine fish. PLoS ONE 11(10):e0163052CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Sayer MDJ, Gibson RN, Atkinson RJA (1996) Growth, diet and condition of corkwing wrasse and rock cook on the west coast of Scotland. J Fish Biol 49:76–94CrossRefGoogle Scholar
  46. 46.
    Sayer MDJ, Gibson RN, Atkinson RJA (1993) Distribution and density of populations of goldsinny wrasse (Ctenolabrus rupestris) on the west coast of Scotland. J Fish Biol 43(suppl A):157–167CrossRefGoogle Scholar
  47. 47.
    Halvorsen KT, Sørdalen TK, Vøllestad LA, Skiftesvik AB, Espeland SH, Olsen EM (2017) Sex- and size-selective harvesting of corkwing wrasse (Symphodus melops)—a cleaner fish used in salmonid aquaculture. ICES J Mar Sci. doi: 10.1093/icesjms/fsw221 Google Scholar
  48. 48.
    Hillden NO (1981) Territoriality and reproductive behavior in the goldsinny, Ctenolabrus rupestris L. Behav Process 6:207–221CrossRefGoogle Scholar
  49. 49.
    Jansson E, Quintela M, Dahle G, Albretsen J, Knutsen H, Andre’ C, Strand Å, Mortensen S, Taggart JB, Karlsbakk E, Kvamme BO, Glover KA (2017) Genetic analysis of goldsinny wrasse reveals evolutionary insights into population connectivity and potential evidence of inadvertent translocation via aquaculture. ICES J Mar Sci. doi: 10.1093/icesjms/fsx046 Google Scholar
  50. 50.
    Dipper FA, Bridges CR, Menz A (1977) Age, growth and feeding in the ballan wrasse Labrus bergylta Ascanius 1767. J Fish Biol 11:105–120CrossRefGoogle Scholar
  51. 51.
    Kvenseth PG, Sjømatsenter N, Andreassen J, Solgaard J (2003) Ballan wrasse—strong medicine. In: Hjelme AN (ed) Cleanerfish. Norsk Fiskeoppdrett A/S, Bergen, pp 18–22Google Scholar
  52. 52.
    Villegas-Ríos D, Alonso-Fernández A, Fabeiro M, Bañón R, Saborido-Rey F (2013) Demographic variation between colour patterns in a temperate protogynous hermaphrodite, the ballan wrasse Labrus bergylta. PLoS One 8(8):e71591CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Villegas-Ríos D, Alonso-Fernández A, Domínguez-Petit R, Saborido-Rey F (2013) Intraspecific variability in reproductive patterns in the temperate hermaphrodite fish, Labrus bergylta. Mar Freshwater Res 64:1156–1168CrossRefGoogle Scholar
  54. 54.
    Villegas-Ríos D, Alonso-Fernández A, Domínguez-Petit R, Saborido-Rey F (2014) Energy allocation and reproductive investment in a temperate protogynous hermaphrodite, the ballan wrasse Labrus bergylta. J Sea Res 86:76–85CrossRefGoogle Scholar
  55. 55.
    Quintela M, Danielsen EA, Lopez L, Barreiro R, Svåsand T, Knutsen H, Skiftesvik AB, Glover KA (2016) Is the ballan wrasse (Labrus bergylta) two species? Genetic analysis reveals within-species divergence associated with plain and spotted morphotype frequencies. Integrat Zool 11:162–172CrossRefGoogle Scholar
  56. 56.
    Almada F, Francisco SM, Lima CS, FitzGerald R, Mirimin L, Villegas-Ríos D, Saborido-Rey F, Afonso P, Morato T, Bexiga S, Robalo JI (2017) Historical gene flow constraints in a northeastern Atlantic fish: phylogeography of the ballan wrasse Labrus bergylta across its distribution range. R Soc Open Sci 4:160773CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    D’Arcy J, Mirimin L, FitzGerald R (2013) Phylogeographic structure of a protogynous hermaphrodite species, the ballan wrasse Labrus bergylta, in Ireland, Scotland, and Norway, using mitochondrial DNA sequence data. ICES J Mar Sci 70:685–693CrossRefGoogle Scholar
  58. 58.
    Potts GW (1973) Cleaning symbiosis among British fish with special reference to Crenilabrus melops (Labridae). J Mar Biol Assoc UK 53:1–10CrossRefGoogle Scholar
  59. 59.
    Bjordal Å (1988) Cleaning symbiosis between wrasse (Labridae) and lice infested salmon (Salmo salar) in mariculture. ICES, Mariculture Committee 188/F, 8 ppGoogle Scholar
  60. 60.
    Bjordal Å (1991) Wrasse as cleaner-fish for farmed salmon. Prog Underwater Sci 16:17–28Google Scholar
  61. 61.
    Leclercq E, Davie A, Migaud H (2014) Delousing efficiency of farmed ballan wrasse (Labrus bergylta) against Lepeophtheirus salmonis infecting Atlantic salmon (Salmo salar) post-smolts. Pest Manag Sci 70:1274–1282CrossRefPubMedGoogle Scholar
  62. 62.
    Figueiredo M, Morato T, Barreiros JP, Afonso P, Santos RS (2005) Feeding ecology of the white seabream, Diplodus sargus, and the ballan wrasse, Labrus bergylta, in the Azores. Fish Res 75:107–119CrossRefGoogle Scholar
  63. 63.
    Skiftesvik AB, Blom G, Agnalt A-L, Durif CMF, Browman HI, Bjelland RM, Harkestad LS, Farestveit E, Paulsen OI, Fauske M, Havelin T, Johnsen K, Mortensen S (2014) Wrasse (Labridae) as cleaner fish in salmonid aquaculture—the Hardangerfjord as a case study. Mar Biol Res 10:289–300CrossRefGoogle Scholar
  64. 64.
    Bjordal Å (1990) Sea lice infestation on farmed salmon: possible use of cleaner-fish as an alternative method for de-lousing. Can Tech Rep Fish Aquat Sci 1761:85–89Google Scholar
  65. 65.
    Imsland AK, Reynolds P, Eliassen G, Hangstad TA, Jónsdóttir ÓDB, Elvegård TA, Lemmens SCA, Rydland R, Nytrø AV (2016) Investigation of behavioural interactions between lumpfish (Cyclopterus lumpus) and goldsinny wrasse (Ctenolabrus rupestris) under controlled conditions. Aquacult Int 24:1509–1521CrossRefGoogle Scholar
  66. 66.
    Grant B, Davie A, Taggart JB, Selly SLC, Picchi N, Bradley C, Prodohl P, Leclercq E, Migaud H (2016) Seasonal changes in broodstock spawning performance and egg quality in ballan wrasse (Labrus bergylta). Aquaculture 464:505–514CrossRefGoogle Scholar
  67. 67.
    Imsland AK, Reynolds P, Eliassen G, Hangstad TA, Foss A, Vikingstad E, Elvegård TA (2014) The use of lumpfish (Cyclopterus lumpus L.) to control sea lice (Lepeophtheirus salmonis Krøyer) infestations in intensively farmed Atlantic salmon (Salmo salar L.). Aquaculture 424:18–23CrossRefGoogle Scholar
  68. 68.
    Costello MJ, Deady S, Pike A, Fives JM (1996) Parasites and diseases of wrasse being used as cleaner-fish on salmon farms in Ireland and Scotland. In: Sayer MDJ, Treasurer JW, Costello MJ (eds) Wrasse biology and use in aquaculture. Blackwell, Oxford, pp 211–227Google Scholar
  69. 69.
    Treasurer JW (2002) A review of potential pathogens of sea lice and the application of cleaner fish in biological control. Pest Manag Sci 58:546–558CrossRefPubMedGoogle Scholar
  70. 70.
    Grave K, Markestad A, Bangem M (1996) Comparison in prescribing patterns of antibacterial drugs in salmonid farming in Norway during the period 1980–1988 and 1989–1994. J Vet Pharmacol Therap 19:184–191CrossRefGoogle Scholar
  71. 71.
    Kvenseth PG (1997) Lice fighting the environmental friendly way! Caligus 2:11–12Google Scholar
  72. 72.
    Gjøsæter J (2002) Distribution and density of goldsinny wrasse (Ctenolabrus rupestris) (Labridae) in the Risør and Arendal areas along the Norwegian Skagerrak coast. Sarsia 87:75–82CrossRefGoogle Scholar
  73. 73.
    Sevatdal S, Horsberg TE (2003) Determination of reduces sensitivity in sea lice (Lepeophtheirus salmonis Krøyer) against the pyrethroid deltamethrin using bioassays and probit modelling. Aquaculture 218:21–31CrossRefGoogle Scholar
  74. 74.
    Henriksen E (2014) Norwegian coastal fisheries: an overview of the coastal fishing fleet of less than 21 m. Nofima 14/2014Google Scholar
  75. 75.
    Bjordal Å (1993) Capture techniques for wrasse (Labridae). ICES CM 1993/B:22Google Scholar
  76. 76.
    Potts GW (1974) The colouration and its behavioural significance in the corkwing wrasse, Crenilabrus melops. J Mar Biol Assoc UK 94:925–938CrossRefGoogle Scholar
  77. 77.
    Sundt RC, Jørstad KE (1993) Population genetic structure of wrasses used as cleanerfish in Atlantic salmon farming in Norway. ICES CM 1993/G:30Google Scholar
  78. 78.
    Sundt RC, Jorstad KE (1998) Genetic population structure of goldsinny wrasse Ctenolabrus rupestris (L.), in Norway: implications for future management of parasite cleaners in the salmon farming industry. Fish Man Ecol 5:291–302CrossRefGoogle Scholar
  79. 79.
    Laikre L, Schwartz MK, Waples RS, Ryman N, The GeM Working Group (2010) Compromising genetic diversity in the wild: unmonitored large-scale release of plants and animals. Trends Ecol Evol 25:520–529CrossRefPubMedGoogle Scholar
  80. 80.
    Blanco Gonzalez E, Aritaki M, Knutsen H, Taniguchi N (2015) Effects of large-scale releases on the genetic structure of red sea bream (Pagrus major, Temminck et Schlegel) populations in Japan. PLoS ONE 10(5):e0125743CrossRefPubMedPubMedCentralGoogle Scholar
  81. 81.
    Treasurer J, Feledi T (2014) The physical condition and welfare of five species of wild-caught wrasse stocked under aquaculture conditions and when stocked in Atlantic salmon, Salmo salar, production cages. J World Aquac Soc 45(2):213–219CrossRefGoogle Scholar
  82. 82.
    Espeland SH, Nedreaas K, Mortensen S, Skiftesvik AB, Agnalt A-L, Durif C, Harkestad L, Karlsbakk E, Knutsen H, Thangstad T, Jørstad K, Bjordal Å, Gjøsæter J (2010) Current knowledge on wrasse—challenges in an increasing fishery. Fisken og havet 7:1–38 (in Norwegian) Google Scholar
  83. 83.
    Potts GW (1985) The nest structure of the corkwing wrasse, Crenilabrus melops (Labridae: Teleostei). J Mar Biol Ass UK 65:531–546CrossRefGoogle Scholar
  84. 84.
    Halvorsen KT, Larsen T, Sørdalen TK, Vøllestad LA, Knutsen H, Olsen EM (2017) Impact of harvesting cleaner fish for salmonid aquaculture assessed from replicated marine protected areas. Mar Biol Res. doi: 10.1080/17451000.2016.1262042 Google Scholar
  85. 85.
    Van der Meeren T, Lønøy T (1998) Use of mesocosms in larval rearing of saithe [Pollachius virens (L.)], goldsinny [Ctenolabrus rupestris (L.)], and corkwing [Crenilabrus melops (L.)]. Aquacult Eng 17:253–260CrossRefGoogle Scholar
  86. 86.
    Skiftesvik AB, Boxaspen K, Parsons A (1996) Preliminary breeding trials of wrasse in an intensive system. In: Sayer MDJ, Treasurer JW, Costello MJ (eds) Wrasse: biology and use in aquaculture. Fishing New Books, Oxford, pp 136–141Google Scholar
  87. 87.
    Helland S, Dahle SW, Hough C, Borthen J (2014) Production of ballan wrasse (Labrus bergylta). Science and practice. The Norwegian Seafood Research Fund (FHF)Google Scholar
  88. 88.
    Powell A, Treasurer JW, Pooley CL, Keay AJ, Lloyd R, Imsland AK, Garcia de Leaniz C (2017) Use of lumpfish for sea-lice control in salmon farming: challenges and opportunities. Rev Aquacult. doi: 10.1111/raq.12194 Google Scholar

Copyright information

© Japanese Society of Fisheries Science 2017

Authors and Affiliations

  1. 1.Department of Natural SciencesUniversity of AgderKristiansandNorway
  2. 2.Center for Coastal ResearchUniversity of AgderKristiansandNorway
  3. 3.Institute of Biological and Environmental SciencesUniversity of AberdeenAberdeenUK
  4. 4.Good Fish FoundationVeenendaalThe Netherlands

Personalised recommendations