Advertisement

Fisheries Science

, Volume 83, Issue 4, pp 563–572 | Cite as

Genetic diversity and population structure of the veined rapa whelk Rapana venosa along the coast of China based on microsatellites

  • Dong-Xiu Xue
  • Tao Zhang
  • Yu-Long Li
  • Jin-Xian LiuEmail author
Original Article Biology

Abstract

Knowledge of the genetic diversity and population structure of marine species across their distribution range is essential for the formulation of effective management and conservation strategies. The veined rapa whelk Rapana venosa is a commercially important fisheries resource in East Asia. To provide basic information for fisheries management and artificial breeding, research on the genetic diversity and population structure of R. venosa across the species’ range in China was carried out using 11 microsatellite loci. All of the 11 populations showed high levels of genetic diversity. Shallow, but significant genetic divergences were detected among these populations, suggesting two geographic subdivision groups of R. venosa along the Chinese coast, with nine populations in northern China forming one group and the other two populations (Rizhao and Zhoushan) forming another. A significant isolation by distance pattern was observed in this species (r = 0.412, P = 0.012), indicating that isolation by geographic distance may play an important role in population differentiation. These results could provide valuable genetic information for the fishery management of R. venosa.

Keywords

Rapana venosa Genetic diversity Population genetic structure Microsatellite 

Notes

Acknowledgements

This project was funded by the National Key Technology R&D Program in the 12th Five Year Plan of China (No. 2011BAD13B01), NSF China Grant (No. 31200280 and 31572636), Shandong Joint Fund for Marine Ecology and Environmental Sciences (No. U1606404), and 100 Talents Program of the Chinese Academy of Sciences to JXL.

Supplementary material

12562_2017_1096_MOESM1_ESM.docx (37 kb)
Supplementary material 1 (DOCX 37 kb)

References

  1. 1.
    Díaz-Ferguson E, Haney R, Wares J, Silliman B (2010) Population genetics of a Trochid gastropod broadens picture of Caribbean Sea connectivity. PLoS ONE 5:e12675CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Avise JC (2000) Phylogeography: the history and formation of species. Harvard University Press, CambridgeGoogle Scholar
  3. 3.
    Zhang FS (1980) Studies on species of Murididae off the China coasts* III. Rapana. Stud Mar Sin 16:113–123 (in Chinese with English abstract) Google Scholar
  4. 4.
    Chung EY, Kim SY, Park K, Park GM (2002) Sexual maturation, spawning, and deposition of the egg capsules of the female purple shell, Rapana venosa (Gastropoda: Muricidae). Malacologia 44:241–258Google Scholar
  5. 5.
    Chandler E, Mcdowell J, Graves J (2008) Genetically monomorphic invasive populations of the rapa whelk, Rapana venosa. Mol Ecol 17:4079–4091CrossRefPubMedGoogle Scholar
  6. 6.
    Harding JM, Mann R, Kilduff CW (2008) Influence of environmental factors and female size on reproductive output in an invasive temperate marine gastropod Rapana venosa (Muricidae). Mar Biol 155:571–581CrossRefGoogle Scholar
  7. 7.
    Yang JM, Zheng XD, Li Q, Wang RC, Song ZL, You BC (2006) Quantitative study on phenotypic genetic diversity of Rapana venosa in China’s coastal waters. Oceanol Limnol Sin 37:385–392 (in Chinese with English abstract) Google Scholar
  8. 8.
    Yang JM, Li Q, Kong LF, Zheng XD, Wang RC (2008) Genetic structure of the veined rapa whelk (Rapana venosa) populations along the coast of China. Biochem Genet 46:539–548CrossRefPubMedGoogle Scholar
  9. 9.
    Yang JM, Li Q, Zheng XD, Song ZL, Wang RC (2008) Genetic diversity in populations of Rapana venosa in coastal waters of China. Oceanol Limnol Sin 39:257–262 (in Chinese with English abstract) Google Scholar
  10. 10.
    Serrouya R, Paetkau D, McLellan BN, Boutin S, Campbell M, Jenkins DA (2012) Population size and major valleys explain microsatellite variation better than taxonomic units for caribou in western Canada. Mol Ecol 21:2588–2601CrossRefPubMedGoogle Scholar
  11. 11.
    Mobley KB, Small CM, Jue NK, Jones AG (2010) Population structure of the dusky pipefish (Syngnathus floridae) from the Atlantic and Gulf of Mexico, as revealed by mitochondrial DNA and microsatellite analyses. J Biogeogr 37:1363–1377CrossRefGoogle Scholar
  12. 12.
    Christie MR, Johnson DW, Stallings CD, Hixon MA (2010) Self-recruitment and sweepstakes reproduction amid extensive gene flow in a coral-reef fish. Mol Ecol 19:1042–1057CrossRefPubMedGoogle Scholar
  13. 13.
    Zhan AB, Hu JJ, Hu XL, Zhou ZC, Hui M, Wang S, Peng W, Wang ML, Bao ZM (2009) Fine-scale population genetic structure of zhikong scallop (Chlamys farreri): do local marine currents drive geographical differentiation? Mar Biotechnol 11:223–235CrossRefPubMedGoogle Scholar
  14. 14.
    Liu JX, Avise JC (2011) High degree of multiple paternity in the viviparous Shiner Perch, Cymatogaster aggregata, a fish with long-term female sperm storage. Mar Biol 158:893–901CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Xue DX, Zhang T, Liu JX (2014) Isolation and characterization of 24 polymorphic microsatellite loci for the veined rapa whelk, Rapana venosa. Conserv Genet Resour 6:131–133CrossRefGoogle Scholar
  16. 16.
    Park S (2001) Trypanotolerance in West African cattle and the population genetic effects of selection. PhD dissertation, University of Dublin, DublinGoogle Scholar
  17. 17.
    Rousset F (2008) Genepop’007: a complete re-implementation of the genepop software for Windows and Linux. Mol Ecol Resour 8:103–106CrossRefPubMedGoogle Scholar
  18. 18.
    Goudet J (2001) FSTAT, a program to estimate and test gene diversities and fixation indices (version 2.9.3). http://www2.unil.ch/popgen/softwares, 2001
  19. 19.
    Dupanloup I, Schneider S, Excoffier L (2002) A simulated annealing approach to define the genetic structure of populations. Mol Ecol 11:2571–2581CrossRefPubMedGoogle Scholar
  20. 20.
    Peakall R, Smouse PE (2012) GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research-an update. Bioinformatics 28:2537–2539CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Narum SR (2006) Beyond Bonferroni: less conservative analyses for conservation genetics. Conserv Genet 7:783–787CrossRefGoogle Scholar
  22. 22.
    Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611–2620CrossRefPubMedGoogle Scholar
  23. 23.
    Pritchard J, Wen X, Falush D (2009) Documentation for structure software: Version 2.3. University of Chicago, Chicago: 1–37Google Scholar
  24. 24.
    Earl DA (2012) STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv Genet Resour 4:359–361CrossRefGoogle Scholar
  25. 25.
    Jombart T, Devillard S, Balloux F (2010) Discriminant analysis of principal components: a new method for the analysis of genetically structured populations. BMC Genet 11:1CrossRefGoogle Scholar
  26. 26.
    Jombart T (2008) Adegenet: a R package for the multivariate analysis of genetic markers. Bioinformatics 24:1403–1405CrossRefPubMedGoogle Scholar
  27. 27.
    Li YL, Xue DX, Gao TX, Liu JX (2016) Genetic diversity and population structure of the rough skin sculpin (Trachidermus fasciatus Heckel) inferred from microsatellite analyses: implications for its conservation and management. Conserv Genet 17:921–930CrossRefGoogle Scholar
  28. 28.
    Nei M (1972) Genetic distance between populations. Am Nat 106:283–292CrossRefGoogle Scholar
  29. 29.
    Takezaki N, Nei M, Tamura K (2010) POPTREE2: software for constructing population trees from allele frequency data and computing other population statistics with Windows interface. Mol Biol Evol 27:747–752CrossRefPubMedGoogle Scholar
  30. 30.
    Belkhir K, Borsa P, Chikhi L, Raufaste N, Bonhomme F (1996) GENETIX 4.05, logiciel sous Windows TM pour la génétique des populations. Lab Génome Popul Interact CNRS UMR 5000:1996–2004Google Scholar
  31. 31.
    Rousset F (1997) Genetic differentiation and estimation of gene flow from F-statistics under isolation by distance. Genetics 145:1219–1228PubMedPubMedCentralGoogle Scholar
  32. 32.
    Jensen JL, Bohonak AJ, Kelley ST (2005) Isolation by distance, web service. BMC Genet 6:13CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Piry S, Luikart G, Cornuet J (1999) Computer note. BOTTLENECK: a computer program for detecting recent reductions in the effective size using allele frequency data. J Hered 90:502–503CrossRefGoogle Scholar
  34. 34.
    Waldick R, Kraus S, Brown M, White B (2002) Evaluating the effects of historic bottleneck events: an assessment of microsatellite variability in the endangered, North Atlantic right whale. Mol Ecol 11:2241–2249CrossRefPubMedGoogle Scholar
  35. 35.
    Cornuet JM, Luikart G (1996) Description and power analysis of two tests for detecting recent population bottlenecks from allele frequency data. Genetics 144:2001–2014PubMedPubMedCentralGoogle Scholar
  36. 36.
    Di Rienzo A, Peterson A, Garza J, Valdes A, Slatkin M, Freimer N (1994) Mutational processes of simple-sequence repeat loci in human populations. Proc Natl Acad Sci USA 91:3166–3170CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    White C, Selkoe KA, Watson J, Siegel DA, Zacherl DC, Toonen RJ (2010) Ocean currents help explain population genetic structure. Proc R Soc London Ser B. doi: 10.1098/rspb.2009.2214 Google Scholar
  38. 38.
    Ni LH, Li Q, Kong LF (2011) Microsatellites reveal fine-scale genetic structure of the Chinese surf clam Mactra chinensis (Mollusca, Bivalvia, Mactridae) in northern China. Mar Ecol 32:488–497CrossRefGoogle Scholar
  39. 39.
    Weetman D, Hauser L, Bayes MK, Ellis JR, Shaw PW (2006) Genetic population structure across a range of geographic scales in the commercially exploited marine gastropod Buccinum undatum. Mar Ecol Prog Ser 317:157–169CrossRefGoogle Scholar
  40. 40.
    Sokolov H-OPEP, Lucassen M, Sokolova IM (2003) Microscale genetic differentiation along the vertical shore gradient in White Sea snails Littorina saxatilis (Olivi) assessed by microsatellite markers. J Molluscan Stud 69:388–391CrossRefGoogle Scholar
  41. 41.
    Colson I, Hughes RN (2004) Rapid recovery of genetic diversity of dogwhelk (Nucella lapillus L.) populations after local extinction and recolonization contradicts predictions from life-history characteristics. Mol Ecol 13:2223–2233CrossRefPubMedGoogle Scholar
  42. 42.
    Ribeiro PA, Branco M, Hawkins SJ, Santos AM (2010) Recent changes in the distribution of a marine gastropod, Patella rustica, across the Iberian Atlantic coast did not result in diminished genetic diversity or increased connectivity. J Biogeogr 37:1782–1796CrossRefGoogle Scholar
  43. 43.
    Scribner KT, Arntzen JW, Burke T (1994) Comparative analysis of intra- and interpopulation genetic diversity in Bufo bufo, using allozyme, single-locus microsatellite, minisatellite, and multilocus minisatellite data. Mol Biol Evol 11:737–748PubMedGoogle Scholar
  44. 44.
    Hunt A (1993) Effects of contrasting patterns of larval dispersal on the genetic connectedness of local populations of two intertidal starfish, Patiriella calcar and P. exigua. Mar Ecol Prog Ser 92:179–186CrossRefGoogle Scholar
  45. 45.
    Bohonak AJ (1999) Dispersal, gene flow, and population structure. Q Rev Biol 74:21–45CrossRefPubMedGoogle Scholar
  46. 46.
    Collin R (2001) The effects of mode of development on phylogeography and population structure of North Atlantic Crepidula (Gastropoda: Calyptraeidae). Mol Ecol 10:2249–2262CrossRefPubMedGoogle Scholar
  47. 47.
    Kenchington E, Patwary M, Zouros E, Bird C (2006) Genetic differentiation in relation to marine landscape in a broadcast-spawning bivalve mollusc (Placopecten magellanicus). Mol Ecol 15:1781–1796CrossRefPubMedGoogle Scholar
  48. 48.
    Baus E, Darrock D, Bruford M (2005) Gene-flow patterns in Atlantic and Mediterranean populations of the Lusitanian sea star Asterina gibbosa. Mol Ecol 14:3373–3382CrossRefPubMedGoogle Scholar
  49. 49.
    Munroe DM, Klinck JM, Hofmann EE, Powell EN (2012) The role of larval dispersal in metapopulation gene flow: local population dynamics matter. J Mar Res 70:2–3CrossRefGoogle Scholar
  50. 50.
    Selkoe K, Toonen RJ (2011) Marine connectivity: a new look at pelagic larval duration and genetic metrics of dispersal. Mar Ecol Prog Ser 436:291–305CrossRefGoogle Scholar
  51. 51.
    Wei LP, Qiu SY, Wang BG, Sun XF, Wang XD (1999) Studies on the reproductive biology of Rapana venosa. J Fish China 23:150–155 (in Chinese with English abstract) Google Scholar
  52. 52.
    Jilan S, Yeli Y (2005) Hydrology of China seas. Ocean Press, BeijingGoogle Scholar
  53. 53.
    Dong YW, Wang HS, Han GD, Ke CH, Zhan X, Nakano T, Williams GA (2012) The impact of Yangtze river discharge, ocean currents and historical events on the biogeographic pattern of Cellana toreuma along the China coast. PLoS ONE 7:e36178CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Yu H, Gao S, Chen AL, Kong LF, Li Q (2015) Genetic diversity and population structure of the ark shell Scapharca broughtonii along the coast of China based on microsatellites. Biochem Syst Ecol 58:235–241CrossRefGoogle Scholar
  55. 55.
    Riginos C, Nachman M (2001) Population subdivision in marine environments: the contributions of biogeography, geographical distance and discontinuous habitat to genetic differentiation in a blennioid fish, Axoclinus nigricaudus. Mol Ecol 10:1439–1453CrossRefPubMedGoogle Scholar
  56. 56.
    Nielsen E, Kenchington E (2001) Prioritising marine fish and shellfish populations for conservation: a useful concept. Fish Fish 2:328–343CrossRefGoogle Scholar
  57. 57.
    Marshall DJ, Krug PJ, Kupriyanova EK, Byrne M, Emlet RB (2012) The biogeography of marine invertebrate life histories. Annu Rev Ecol Evol Syst 43:97CrossRefGoogle Scholar

Copyright information

© Japanese Society of Fisheries Science 2017

Authors and Affiliations

  • Dong-Xiu Xue
    • 1
    • 2
  • Tao Zhang
    • 1
    • 2
  • Yu-Long Li
    • 1
    • 3
  • Jin-Xian Liu
    • 1
    • 2
    Email author
  1. 1.CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of OceanologyChinese Academy of SciencesQingdaoChina
  2. 2.Laboratory for Marine Ecology and Environmental ScienceQingdao National Laboratory for Marine Science and TechnologyQingdaoChina
  3. 3.University of Chinese Academy of SciencesBeijingChina

Personalised recommendations