Fisheries Science

, Volume 83, Issue 4, pp 543–550 | Cite as

Sodium fluoride influences calcium metabolism resulting from the suppression of osteoclasts in the scales of nibbler fish Girella punctata

  • Masayuki Sato
  • Koji Yachiguchi
  • Keiichi Motohashi
  • Yukio Yaguchi
  • Yoshiaki Tabuchi
  • Yoichiro Kitani
  • Takahiro Ikari
  • Shouzo Ogiso
  • Toshio Sekiguchi
  • Tran Ngoc Hai
  • Do Thi Thanh Huong
  • Nguyen Viet Hoang
  • Makoto Urata
  • Hiroyuki Mishima
  • Atsuhiko Hattori
  • Nobuo SuzukiEmail author
Original Article Biology


The influence of sodium fluoride (NaF) on calcium metabolism was examined in nibbler fish (marine teleosts). Two days after the administration of NaF (5 μg/g of body weight) (around 10−4 M in fish), we showed that plasma calcium levels significantly decreased in NaF-treated nibbler fish. In addition, we detected fluoride in the treated scales by use of a scanning electron microscope with an energy-dispersive X-ray microanalysis, indicating that NaF directly affects their scales. Therefore, the influence of NaF on osteoblasts and osteoclasts in the scales was examined. In the scales of NaF-injected nibbler fish, tartrate-resistant acid phosphatase (TRAP) (osteoclastic marker enzyme) decreased, although alkaline phosphatase (osteoblastic marker enzyme) was activated. To confirm the effect of NaF on osteoclasts, furthermore, the mRNA expressions of osteoclastic markers (matrix metalloproteinase-9 and TRAP) were decreased significantly 2 days after incubation. In barred knifejaws, plasma calcium levels decreased as they did in nibbler fish. Therefore, NaF functions in both osteoblasts and osteoclasts and then influences calcium metabolism in marine fish. In the marine environment, high levels of fluoride (1.2–1.5 mg F/l) (around 10−5–10−4 M) are present in seawater. It is probable that teleosts living in seawater efficiently use fluoride to regulate their blood calcium levels.


Sodium fluoride Osteoblasts Osteoclasts Scales Calcium metabolism Element analysis Nibbler fish 



This study was supported in part by grants to N.S. (Grant-in-Aid for Scientific Research [C] No. 16K07871 by JSPS), to A.H. (Grant-in-Aid for Scientific Research [C] No. 24570068 by JSPS), to T.S. (Scientific Research [C] No. 15K07126 by JSPS), and to H.M. (Scientific Research [C] No. 15K11034 by JSPS). This work was performed under the cooperative research program of the Institute of Nature and Environmental Technology, Kanazawa University, Acceptance No. 17022, in 2017. We greatly appreciate Notojima and Uozu aquariums for providing us with barred knifejaw.


  1. 1.
    Mandinic Z, Curcic M, Antonijevic B, Carevic M, Mandic J, Djukic-Cosic D, Lekic CP (2010) Fluoride in drinking water and dental fluorosis. Sci Total Environ 408:3507–3512CrossRefPubMedGoogle Scholar
  2. 2.
    Gbadebo AM (2012) Groundwater fluoride and dental fluorosis in southwestern Nigeria. Environ Geochem Health 34:597–604CrossRefPubMedGoogle Scholar
  3. 3.
    Camargo JA (2003) Fluoride toxicity to aquatic organisms: a review. Chemosphere 50:251–264CrossRefPubMedGoogle Scholar
  4. 4.
    Adelung D, Buchholz F, Culik B, Keck A (1987) Fluoride in tissues of krill Euphausia superba Dana and Meganyctiphanes norvegica M. Sars in relation to the moult cycle. Polar Biol 7:43–50CrossRefGoogle Scholar
  5. 5.
    Yoshitomi B, Nagano I (2012) Effect of dietary fluoride derived from Antarctic krill (Euphausia superba) meal on growth of yellowtail (Seriola quinqueradiata). Chemosphere 86:891–897CrossRefPubMedGoogle Scholar
  6. 6.
    Bereiter-Hahn J, Zylberberg L (1993) Regeneration of teleost fish scale. Comp Biochem Physiol Part A 105:625–641CrossRefGoogle Scholar
  7. 7.
    Suzuki N, Suzuki T, Kurokawa T (2000) Suppression of osteoclastic activities by calcitonin in the scales of goldfish (freshwater teleost) and nibbler fish (seawater teleost). Peptides 21:115–124CrossRefPubMedGoogle Scholar
  8. 8.
    Yoshikubo H, Suzuki N, Takemura K, Hoso M, Yashima S, Iwamuro S, Takagi Y, Tabata MJ, Hattori A (2005) Osteoblastic activity and estrogenic response in the regenerating scale of goldfish, a good model of osteogenesis. Life Sci 76:2699–2709CrossRefPubMedGoogle Scholar
  9. 9.
    Suzuki N, Kitamura K, Nemoto T, Shimizu N, Wada S, Kondo T, Tabata MJ, Sodeyama F, Ijiri K, Hattori A (2007) Effect of vibration on osteoblastic and osteoclastic activities: analysis of bone metabolism using goldfish scale as a model for bone. Adv Space Res 40:1711–1721CrossRefGoogle Scholar
  10. 10.
    Ohira Y, Shimizu M, Ura K, Takagi Y (2007) Scale regeneration and calcification in goldfish Carassius auratus: quantitative and morphological processes. Fish Sci 73:46–54CrossRefGoogle Scholar
  11. 11.
    Suzuki N, Somei M, Seki A, Reiter RJ, Hattori A (2008) Novel bromomelatonin derivatives as potentially effective drugs to treat bone diseases. J Pineal Res 45:229–234CrossRefPubMedGoogle Scholar
  12. 12.
    Yamada J (1961) Studies on the structure and growth of the scales in the goldfish. Mem Fac Fish Hokkaido Univ 9:181–226Google Scholar
  13. 13.
    Berg A (1968) Studies on the metabolism of calcium and strontium in freshwater fish I: relative contribution of direct and intestinal absorption. Mem Ist Ital Idrobiol 23:161–196Google Scholar
  14. 14.
    Mugiya Y, Watabe N (1977) Studies on fish scale formation and resorption II: effect of estradiol on calcium homeostasis and skeletal tissue resorption in the goldfish, Carassius auratus, and the killifish, Fundulus heteroclitus. Comp Biochem Physiol Part A 57:197–202CrossRefGoogle Scholar
  15. 15.
    Suzuki N, Hattori A (2002) Melatonin suppresses osteoclastic and osteoblastic activities in the scales of goldfish. J Pineal Res 33:253–258CrossRefPubMedGoogle Scholar
  16. 16.
    Suzuki N, Danks JA, Maruyama Y, Ikegame M, Sasayama Y, Hattori A, Nakamura M, Tabata MJ, Yamamoto T, Furuya R, Saijoh K, Mishima H, Srivastav AK, Furusawa Y, Kondo T, Tabuchi Y, Takasaki I, Chowdhury VS, Hayakawa K, Martin TJ (2011) Parathyroid hormone 1 (1–34) acts on the scales and involves calcium metabolism in goldfish. Bone 48:1186–1193CrossRefPubMedGoogle Scholar
  17. 17.
    Sato M, Hanmoto T, Yachiguchi K, Tabuchi Y, Kondo T, Endo M, Kitani Y, Sekiguchi T, Urata M, Hai TN, Srivastav AK, Mishima H, Hattori A, Suzuki N (2016) Sodium fluoride induces hypercalcemia resulting from the upregulation of both osteoblastic and osteoclastic activities in goldfish, Carassius auratus. Comp Biochem Physiol Part C 189:54–60Google Scholar
  18. 18.
    Suzuki N, Yamamoto M, Watanabe K, Kambegawa A, Hattori A (2004) Both mercury and cadmium directly influence calcium homeostasis resulting from the suppression of scale bone cells: the scale is a good model for the evaluation of heavy metals in bone metabolism. J Bone Miner Metab 22:439–446PubMedGoogle Scholar
  19. 19.
    Suzuki N, Yamamoto K, Sasayama Y, Suzuki T, Kurokawa T, Kambegawa A, Srivastav AK, Hayashi S, Kikuyama S (2004) Possible direct induction by estrogen of calcitonin secretion from ultimobranchial cells in the goldfish. Gen Comp Endocrinol 138:121–127CrossRefPubMedGoogle Scholar
  20. 20.
    Omori K, Wada S, Maruyama Y, Hattori A, Kitamura K, Sato Y, Nara M, Funahashi H, Yachiguchi K, Hayakawa K, Endo M, Kusakari R, Yano S, Srivastav AK, Kusui T, Ejiri S, Chen W, Tabuchi Y, Furusawa Y, Kondo T, Sasayama Y, Nishiuchi T, Nakano M, Sakamoto T, Suzuki N (2012) Prostaglandin E2 increases both osteoblastic and osteoclastic activities in the scales of goldfish and participates in the calcium metabolism in goldfish. Zool Sci 29:499–504CrossRefPubMedGoogle Scholar
  21. 21.
    Yachiguchi K, Matsumoto N, Haga Y, Suzuki M, Matsumura C, Tsurukawa M, Okuno T, Nakano T, Kawabe K, Kitamura K, Toriba A, Hayakawa K, Chowdhury VS, Endo M, Chiba A, Sekiguchi T, Nakano M, Tabuchi Y, Kondo T, Wada S, Mishima H, Hattori A, Suzuki N (2014) Polychlorinated biphenyl (118) activates osteoclasts and induces bone resorption in goldfish. Env Sci Poll Res 21:6365–6372CrossRefGoogle Scholar
  22. 22.
    Mishima H, Sakae T, Kozawa Y (1995) Scanning electron microscopy and energy dispersive spectroscopy analysis of calciotraumatic lines in rat labial dentin after acute exposure to strontium chloride. Scanning Microsc 9:797–803PubMedGoogle Scholar
  23. 23.
    Vaes G (1988) Cellular biology and biochemical mechanism of bone resorption. Clin Orthop 231:239–271Google Scholar
  24. 24.
    Dimai HP, Linkhart TA, Linkhart SG, Donahue LR, Beamer WG, Rosen CJ, Farley JR, Baylink DJ (1998) Alkaline phosphatase levels and osteoprogenitor cell numbers suggest bone formation may contribute to peak bone density differences between two inbred strains of mice. Bone 22:211–216CrossRefPubMedGoogle Scholar
  25. 25.
    Suda T, Takahashi N, Udagawa N, Jimi E, Gillespie MT, Martin TJ (1999) Modulation of osteoclast differentiation and function by the new members of the tumor necrosis factor receptor and ligand families. Endocr Rev 20:345–357CrossRefPubMedGoogle Scholar
  26. 26.
    Suzuki N, Kitamura K, Omori K, Nemoto T, Satoh Y, Tabata MJ, Ikegame M, Yamamoto T, Ijiri K, Furusawa Y, Kondo T, Takasaki I, Tabuchi Y, Wada S, Shimizu N, Sasayama Y, Endo M, Takeuchi T, Nara M, Somei M, Maruyama Y, Hayakawa K, Shimazu T, Shigeto Y, Yano S, Hattori A (2009) Response of osteoblasts and osteoclasts in regenerating scales to gravity loading. Biol Sci Space 23:211–217CrossRefGoogle Scholar
  27. 27.
    Pan L, Shi X, Liu S, Guo X, Zhao M, Cai R, Sun G (2014) Fluoride promotes osteoblastic differentiation through canonical Wnt/β-catenin signaling pathway. Toxicol Lett 225:34–42CrossRefPubMedGoogle Scholar
  28. 28.
    Yachiguchi K, Sekiguchi T, Nakano M, Hattori A, Yamamoto M, Kitamura K, Maeda M, Tabuchi Y, Kondo T, Kamauchi H, Nakabayashi H, Srivastav AK, Hayakawa K, Sakamoto T, Suzuki N (2014) Effect of inorganic mercury and methylmercury on osteoclasts and osteoblasts in the scales of the marine teleost as a model system of bone. Zool Sci 31:330–337CrossRefPubMedGoogle Scholar
  29. 29.
    Thamamongood TA, Furuya R, Fukuba S, Nakamura M, Suzuki N, Hattori A (2012) Expression of osteoblastic and osteoclastic genes during spontaneous regeneration and autotransplantation of goldfish scale: a new tool to study intramembranous bone regeneration. Bone 50:1240–1249CrossRefPubMedGoogle Scholar
  30. 30.
    Lacey DL, Boyle WJ, Simonet WS, Kostenuik PJ, Dougall WC, Sullivan JK, Martin JS, Dansey R (2012) Bench to bedside: elucidation of the OPG-RANK-RANKL pathway and the development of denosumab. Nat Rev Drug Discov 11:401–419CrossRefPubMedGoogle Scholar
  31. 31.
    Kearns AE, Khosla S, Kostenuik PJ (2008) Receptor activator of nuclear factor κB ligand and osteoprotegerin regulation of bone remodeling in health and disease. Endocr Rev 29:155–192CrossRefPubMedGoogle Scholar
  32. 32.
    Silva I, Branco JC (2011) RANK/RANKL/OPG: literature review. Acta Reumatol Port 36:209–218PubMedGoogle Scholar
  33. 33.
    Everett ET (2011) Fluoride’s effects on the formation of teeth and bones, and the influence of genetics. J Dent Res 90:552–560CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Japanese Society of Fisheries Science 2017

Authors and Affiliations

  • Masayuki Sato
    • 1
  • Koji Yachiguchi
    • 1
  • Keiichi Motohashi
    • 2
  • Yukio Yaguchi
    • 2
  • Yoshiaki Tabuchi
    • 3
  • Yoichiro Kitani
    • 1
  • Takahiro Ikari
    • 1
  • Shouzo Ogiso
    • 1
  • Toshio Sekiguchi
    • 1
  • Tran Ngoc Hai
    • 4
  • Do Thi Thanh Huong
    • 4
  • Nguyen Viet Hoang
    • 5
  • Makoto Urata
    • 1
    • 6
  • Hiroyuki Mishima
    • 7
  • Atsuhiko Hattori
    • 8
  • Nobuo Suzuki
    • 1
    Email author
  1. 1.Noto Marine Laboratory, Institute of Nature and Environmental TechnologyKanazawa UniversityNoto-choJapan
  2. 2.Electron Microscope CenterTokyo University of AgricultureTokyoJapan
  3. 3.Division of Molecular Genetics Research, Life Science Research CenterUniversity of ToyamaToyamaJapan
  4. 4.College of Aquaculture and FisheriesCan Tho UniversityCan ThoVietnam
  5. 5.Department of Science and TechnologyCenter of Application and InformationCamauVietnam
  6. 6.Institute of Noto SATOUMI Education ResearchNoto-choJapan
  7. 7.Department of Dental EngineeringTsurumi University School of Dental MedicineYokohamaJapan
  8. 8.Department of Biology, College of Liberal Arts and SciencesTokyo Medical and Dental UniversityIchikawaJapan

Personalised recommendations