Fisheries Science

, Volume 82, Issue 3, pp 459–471 | Cite as

Spatial and temporal variability of unicellular diazotrophic cyanobacteria in the eastern Seto Inland Sea

  • Ryoya Hashimoto
  • Hiroyasu Watai
  • Kazutaka Miyahara
  • Yoshihiko Sako
  • Takashi YoshidaEmail author
Original Article Biology


The Seto Inland Sea is one of the largest semi-enclosed seas of Japan, where inflows of both nutrient-rich freshwater and nutrient-poor open ocean water have a profound influence on oceanographic conditions in the surface layers. To explore the diversity and distribution of unicellular diazotrophic cyanobacteria in this highly complex coastal area, we evaluated the seasonal dynamics of the cyanobacteria in the Seto Inland Sea over a period of 2 years. We obtained sequences belonging to UCYN-A and UCYN-C from the UCYN 16S rRNA gene clone library. The UCYN-C sequences were divided into three major types, referred to as UCYN-C ribotypes 1, 2, and 3; these groups clustered with Cyanothece ATCC51142, Cyanothece SKTU126, and the endosymbiont of Rhopalodia gibba, respectively. Results of qPCR showed that UCYN-A was detected during the early summer season at sampling points with temperatures ranging from 14 to 28 °C and with relatively nitrogen-depleted conditions. The highest abundance of UCYN-C was observed during the winter season, reaching 8.3 × 105 nifH gene copies l−1. Our results revealed a widespread presence of unicellular diazotrophic cyanobacteria in the Seto Inland Sea, suggesting their contribution to the biogeochemical cycle.


Seto Inland Sea Unicellular diazotrophic cyanobacteria UCYN-A UCYN-C 



We are grateful to the captain and crew of the research vessel Shin-Hyogo (Hyogo Prefectural Technology Center for Agriculture, Forestry and Fisheries). We thank Mr. Kazuhiro Harada (Hyogo Prefectural Technology Center for Agriculture, Forestry and Fisheries) for his cooperation with the measurement of water samples. This work was supported by JSPS KAKENHI grants no. 23658160 and 14J02468.

Supplementary material

12562_2016_983_MOESM1_ESM.docx (152 kb)
Supplementary material 1 (DOCX 151 kb)
12562_2016_983_MOESM2_ESM.docx (66 kb)
Supplementary material 2 (DOCX 65 kb)


  1. 1.
    Großkopf T, Mohr W, Baustian T, Schunck H, Gill D, Kuypers MMM, Lavik G, Schmitz RA, Wallace DWR, LaRoche J (2012) Doubling of marine dinitrogen-fixation rates based on direct measurements. Nature 488:361–364CrossRefPubMedGoogle Scholar
  2. 2.
    Capone DG, Zehr JP, Paerl HW, Bergman B, Carpenter EJ (1997) Trichodesmium, a globally significant marine cyanobacterium. Science 276:1221–1229CrossRefGoogle Scholar
  3. 3.
    Moisander PH, Beinart RA, Hewson I, White AE, Johnson KS, Carlson CA, Montoya JP, Zehr JP (2010) Unicellular cyanobacterial distributions broaden the oceanic N2 fixation domain. Science 327:1512–1514CrossRefPubMedGoogle Scholar
  4. 4.
    Zehr JP, Waterbury JB, Turner PJ, Montoya JP, Omoregie E, Steward GF, Hansen A, Karl DM (2001) Unicellular cyanobacteria fix N2 in the subtropical North Pacific Ocean. Nature 412:635–638CrossRefPubMedGoogle Scholar
  5. 5.
    Montoya JP, Holl CM, Zehr JP, Hansen A, Villareal TA, Capone DG (2004) High rates of N2 fixation by unicellular diazotrophs in the oligotrophic Pacific Ocean. Nature 430:1027–1032CrossRefPubMedGoogle Scholar
  6. 6.
    Zehr JP (2011) Nitrogen fixation by marine cyanobacteria. Trends Microbiol 19:162–173CrossRefPubMedGoogle Scholar
  7. 7.
    Church MJ, Björkman KM, Karl DM, Saito MA, Zehr JP (2008) Regional distributions of nitrogen-fixing bacteria in the Pacific Ocean. Limnol Oceanogr 53:63–77CrossRefGoogle Scholar
  8. 8.
    Goebel NL, Turk KA, Achilles KM, Paerl R, Hewson I, Morrison AE, Montoya JP, Edwards CA, Zehr JP (2010) Abundance and distribution of major groups of diazotrophic cyanobacteria and their potential contribution to N2 fixation in the tropical Atlantic Ocean. Environ Microbiol 12:3272–3289CrossRefPubMedGoogle Scholar
  9. 9.
    Zehr JP, Bench SR, Carter BJ, Hewson I, Niazi F, Shi T, Tripp HJ, Affourtit JP (2008) Globally distributed uncultivated oceanic N2-fixing cyanobacteria lack oxygenic photosystem II. Science 322:1110–1112CrossRefPubMedGoogle Scholar
  10. 10.
    Zehr JP, Bench SR, Mondragon EA, McCarren J, DeLong EF (2007) Low genomic diversity in tropical oceanic N2-fixing cyanobacteria. Proc Natl Acad Sci USA 104:17807–17812CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Marquardt J, Palinska KA (2007) Genotypic and phenotypic diversity of cyanobacteria assigned to the genus Phormidium (Oscillatoriales) from different habitats and geographical sites. Arch Microbiol 187:397–413CrossRefPubMedGoogle Scholar
  12. 12.
    Foster RA, Subramaniam A, Mahaffey C, Carpenter EJ, Capone DG, Zehr JP (2007) Influence of the Amazon River plume on distributions of free-living and symbiotic cyanobacteria in the western tropical north Atlantic Ocean. Limnol Oceanogr 52:517–532CrossRefGoogle Scholar
  13. 13.
    Langlois RJ, Hümmer D, LaRoche J (2008) Abundances and distributions of the dominant nifH phylotypes in the Northern Atlantic Ocean. Appl Environ Microbiol 74:1922–1931CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Langlois RJ, Laroche J, Raab PA (2005) Diazotrophic diversity and distribution in the tropical and subtropical Atlantic Ocean. Appl Environ Microbiol 71:7910–7919CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Hagino K, Onuma R, Kawachi M, Horiguchi T (2013) Discovery of an endosymbiotic nitrogen-fixing cyanobacterium UCYN-A in Braarudosphaera bigelowii (Prymnesiophyceae). PLoS One 8:e81749CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Man-Aharonovich D, Kress N, Zeev EB, Berman-Frank I, Béjà O (2007) Molecular ecology of nifH genes and transcripts in the eastern Mediterranean Sea. Environ Microbiol 9:2354–2363CrossRefPubMedGoogle Scholar
  17. 17.
    Yogev T, Rahav E, Bar-Zeev E, Man-Aharonovich D, Stambler N, Kress N, Béjà O, Mulholland MR, Herut B, Berman-Frank I (2011) Is dinitrogen fixation significant in the Levantine Basin, East Mediterranean Sea? Environ Microbiol 13:854–871CrossRefPubMedGoogle Scholar
  18. 18.
    Short SM, Zehr JP (2007) Nitrogenase gene expression in the Chesapeake Bay Estuary. Environ Microbiol 9:1591–1596CrossRefPubMedGoogle Scholar
  19. 19.
    Affourtit J, Zehr JP, Paerl HW (2001) Distribution of nitrogen-fixing microorganisms along the Neuse River Estuary, North Carolina. Microb Ecol 41:114–123PubMedGoogle Scholar
  20. 20.
    Rees AP, Gilbert JA, Kelly-Gerreyn BA (2009) Nitrogen fixation in the western English Channel (NE Atlantic Ocean). Mar Ecol Prog Ser 374:7–12CrossRefGoogle Scholar
  21. 21.
    Yamamoto T (2003) The Seto Inland Sea–eutrophic or oligotrophic? Mar Pollut Bull 47:37–42CrossRefPubMedGoogle Scholar
  22. 22.
    Takeoka H (1984) Exchange and transport time scales in the Seto Inland Sea. Cont Shelf Res 3:327–341CrossRefGoogle Scholar
  23. 23.
    Manabe T, Tanda M (1986) A method for automated, simultaneous analysis of reactive silicate, reactive phosphate, ammonia, nitrite and nitrate in sea water. Umi to Sora 62:25–37Google Scholar
  24. 24.
    Church MJ, Jenkins BD, Karl DM, Zehr JP (2005) Vertical distributions of nitrogen-fixing phylotypes at Stn ALOHA in the oligotrophic North Pacific Ocean. Aquat Microb Ecol 38:3–14CrossRefGoogle Scholar
  25. 25.
    Tillett D, Neilan BA (2000) Xanthogenate nucleic acid isolation from cultured and environmental cyanobacteria. J Phycol 36:251–258CrossRefGoogle Scholar
  26. 26.
    Yoshida T, Yuki Y, Lei S, Chinen H, Yoshida M, Kondo R, Hiroishi S (2003) Quantitative detection of toxic strains of the cyanobacterial genus microcystis by competitive PCR. Microb Environ 18:16–23CrossRefGoogle Scholar
  27. 27.
    Zehr JP, Turner PJ (2001) Nitrogen fixation: nitrogenase genes and gene expression. Methods Microbiol 30:271–286CrossRefGoogle Scholar
  28. 28.
    Mazard SL, Fuller NJ, Orcutt KM, Bridle O, Scanlan DJ (2004) PCR analysis of the distribution of unicellular cyanobacterial diazotrophs in the Arabian Sea. Appl Environ Microbiol 70:7355–7364CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Nübel U, Garcia-Pichel F, Muyzer G (1997) PCR primers to amplify 16S rRNA genes from Cyanobacteria. Microbiology 63:3327–3332Google Scholar
  30. 30.
    Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Kobayashi S, Fujiwara T, Tada M, Tsukamoto H, Yoyoda T (2006) The distributions of nitrogen (N), phosphorus (P), silicon (Si) and nutrient ratios during the stratified season in the Seto Inland Sea. Oceanogr Japan 15:283–297Google Scholar
  32. 32.
    Hashimoto T, Yamamoto T, Tada K, Matsuda O, Nagasue T (1997) Primary production and physical structure of the Seto Inland Sea, Japan. Oceanogr Soc Japan 35:109–114Google Scholar
  33. 33.
    Kamata S, Tenjin M, Ueta Y (2012) Intrusion of water mass derived from North Pacific Intermediate Water from the lower layer flowing into the Kii Channel in winter. Bull Tokushima Pref Fish Res Ins 8:7–11Google Scholar
  34. 34.
    Ohki K, Kamiya M, Honda D, Kumazawa S, Ho KK (2008) Morphological and phylogenetic studies on unicellular diazotrophic cyanobacteria (Cyanophytes) isolated from the coastal waters around Singapore. J Phycol 44:142–151CrossRefPubMedGoogle Scholar
  35. 35.
    Nakayama T, Kamikawa R, Tanifuji G, Kashiyama Y, Ohkouchi N, Archibald JM, Inagaki Y (2014) Complete genome of a nonphotosynthetic cyanobacterium in a diatom reveals recent adaptations to an intracellular lifestyle. Proc Natl Acad Sci USA 111:11407–11412CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Prechtl J, Kneip C, Lockhart P, Wenderoth K, Maier UG (2004) Intracellular spheroid bodies of Rhopalodia gibba have nitrogen-fixing apparatus of cyanobacterial origin. Mol Biol Evol 21:1477–1481CrossRefPubMedGoogle Scholar
  37. 37.
    Kneip C, Voβ C, Lockhart PJ, Maier UG (2008) The cyanobacterial endosymbiont of the unicellular algae Rhopalodia gibba shows reductive genome evolution. BMC Evol Biol 8:30CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Nakayama T, Kamikawa R, Tanifuji G, Kashiyama Y, Ohkouchi N, Archibald JM, Inagaki Y (2014) Complete genome of a nonphotosynthetic cyanobacterium in a diatom reveals recent adaptations to an intracellular lifestyle. Proc Natl Acad Sci USA 111:11407–11412CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Taniuchi Y, Chen YL, Chen HY, Tsai ML, Ohki K (2012) Isolation and characterization of the unicellular diazotrophic cyanobacterium Group C TW3 from the tropical western Pacific Ocean. Environ Microbiol 14:641–654CrossRefPubMedGoogle Scholar
  40. 40.
    Díez B, Bergman B, Pedrós-Alió C, Antó M, Snoeijs P (2012) High cyanobacterial nifH gene diversity in Arctic seawater and sea ice brine. Environ Microbiol Rep 4:360–366CrossRefPubMedGoogle Scholar
  41. 41.
    Brauer VS, Stomp M, Rosso C, van Beusekom SA, Emmerich B, Stal LJ, Huisman J (2013) Low temperature delays timing and enhances the cost of nitrogen fixation in the unicellular cyanobacterium Cyanothece. ISME J 7:2105–2115CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Terumi T, Akira H, Yasufumi M, Tetsuo Y (2001) Budget of suspended materials and nutrients in Osaka Bay. Oceanogr Japan 10:397–412CrossRefGoogle Scholar
  43. 43.
    Le Moal M, Biegala IC (2009) Diazotrophic unicellular cyanobacteria in the northwestern Mediterranean Sea: a seasonal cycle. Limnol Oceanogr 54:845–855CrossRefGoogle Scholar
  44. 44.
    Needoba JA, Foster RA, Sakamoto C, Zehr JP, Johnson KS (2007) Nitrogen fixation by unicellular diazotrophic cyanobacteria in the temperate oligotrophic North Pacific Ocean. Limnol Oceanogr 52:1317–1327CrossRefGoogle Scholar
  45. 45.
    Redfield AC (1958) The biological control of chemical factors in the environment. Am Sci 46:205–221Google Scholar

Copyright information

© Japanese Society of Fisheries Science 2016

Authors and Affiliations

  • Ryoya Hashimoto
    • 1
  • Hiroyasu Watai
    • 1
  • Kazutaka Miyahara
    • 2
  • Yoshihiko Sako
    • 1
  • Takashi Yoshida
    • 1
    Email author
  1. 1.Graduate School of AgricultureKyoto UniversityKyotoJapan
  2. 2.Hyogo Prefectural Technology Center for Agriculture, Forestry and FisheriesFisheries Technology InstituteAkashiJapan

Personalised recommendations