Skip to main content
Log in

Comparison of ethanol productivity among yeast strains using three different seaweeds

  • Original Article
  • Chemistry and Biochemistry
  • Published:
Fisheries Science Aims and scope Submit manuscript

Abstract

This study compared the ethanol productivity of different yeast strains using three different seaweed species as fermentation feedstocks. Each seaweed was saccharified by treatment with 3 % (v/v) sulfuric acid and cellulase. Ulva spp., Gracilaria spp. and Costaria costata yielded 0.22, 0.16, and 0.10 g of reducing sugars per 1 g of dried seaweed powder, respectively. Among the yeast strains tested, the marine-derived C-19 had maximum ethanol productivity, with production of 0.15, 0.08, and 0.05 g of ethanol from saccharified solutions containing 1 g of Ulva spp., Gracilaria spp., and C. costata powder, respectively. By the optimization of pretreatment, saccharification and fermentation conditions, C-19 yeast became capable of producing 0.09 g of ethanol from the alginate-extracted residue of C. costata. Finally, to evaluate the robustness of our measurements, we performed scale-up saccharification and fermentation using a jar fermentor. The productivity of both saccharification and fermentation were similar across both scales. Thus, we confirmed that the ethanol fermentation conditions from seaweeds powders in this study are appropriate even at larger scales.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Quintero JA, Montoya MI, Sanchez OJ, Sanchez OJ, Giraldo OH, Giraldo OH (2008) Fuel ethanol production from sugarcane and corn: comparative analysis for a Colombian case. Energy (Oxf) 33:385–399

    Article  CAS  Google Scholar 

  2. Wang R, Dominguez-Espinosa RM, Leonard K, Konutinas A, Webb C (2002) The application of a generic feedstock from wheat for microbial fermentation. Biotechnol Prog 18:1033–1038

    Article  CAS  PubMed  Google Scholar 

  3. Ogbonna JC, Mashima H, Tanaka H (2001) Scale up fuel ethanol production from sugar beet juice using loofa sponge immobilized bioreactor. Bioresour Technol 76:1–8

    Article  CAS  PubMed  Google Scholar 

  4. Velmurugan R, Muthukumar K (2011) Utilization of sugarcane bagasse for bioethanol production: sono-assisted acid hydrolysis approach. Bioresour Technol 102:7119–7123

    Article  CAS  PubMed  Google Scholar 

  5. Okamoto K, Nitta Y, Maekawa N, Yanase H (2011) Direct ethanol production from starch, wheat bran and rice straw by the white rot fungus Trametes hirsuta. Enzyme Microb Technol 48:273–277

    Article  CAS  PubMed  Google Scholar 

  6. Shinozaki Y, Kitamoto HK (2011) Ethanol production from ensiled rice straw and whole-crop silage by the simultaneous enzymatic saccharification and fermentation process. J Biosci Bioeng 111:320–325

    Article  CAS  PubMed  Google Scholar 

  7. Wargacki AJ, Leonard E, Win MN, Regitsky DD, Santos CN, Kim PB, Cooper SR, Raisner RM, Herman A, Sivitz AB, Lakshmanaswamy A, Kashiyama Y, Baker D, Yoshikuni Y (2012) An engineered microbial platform for direct biofuel production from brown macroalgae. Science 335:308–313

    Article  CAS  PubMed  Google Scholar 

  8. Ross AB, Jones JM, Kubacki ML, Bridgeman T (2008) Classification of macroalgae as fuel and its thermochemical behaviour. Bioresour Technol 99:6494–6504

    Article  CAS  PubMed  Google Scholar 

  9. Demirbas A (2010) Use of algae as biofuel sources. Energy Convers Manag 51:2738–2749

    Article  CAS  Google Scholar 

  10. Obara N, Ishida M, Hamada-sato N, Urano N (2012) Efficient bioethanol production from paper shredder scrap by a marine derived Saccharomyces cerevisiae C-19. Stud Sci Technol 1:49–54

    Google Scholar 

  11. Takagi T, Uchida M, Matsushima R, Ishida M, Urano N (2012) Efficient bioethanol production from water hyacinth Eichhornia crassipes by both preparation of the saccharified solution and selection of fermenting yeasts. Fish Sci 78:905–910

    Article  CAS  Google Scholar 

  12. Ueno R, Hamada-Sato N, Urano N (2003) Fermentation of molasses by several yeasts from hot spring drain and phylogeny of unique isolate producing ethanol at 55 °C. J Tokyo Univ Fish 90:23–30

    Google Scholar 

  13. Ueno R, Urano N, Kimura S (2002) Effect of temperature and cell density on ethanol fermentation by a thermotolerant aquatic yeast strain isolated from a hot spring environment. Fish Sci 68:571–578

    Article  CAS  Google Scholar 

  14. Ueno R, Urano N, Kimura S (2001) Characterization of thermotolerant, fermentative yeasts from hot spring drainage. Fish Sci 67:138–145

    Article  CAS  Google Scholar 

  15. Urano N, Hirai H, Ishida M, Kimura S (1998) Characterization of ethanol-producing marine yeasts isolated from coastal water. Fish Sci 64:633–637

    CAS  Google Scholar 

  16. Kumar A, Singh LK, Ghosh S (2009) Bioconversion of lignocellulosic fraction of water-hyacinth (Eichhornia crassipes) hemicellulose acid hydrolysate to ethanol by Pichia stipites. Bioresour Technol 100:3293–3297

    Article  CAS  PubMed  Google Scholar 

  17. Obara N, Enoki M, Okai M, Ueda K, Ishida M, Urano N (2014) Bioethanol production by novel yeasts with xylose fermentation activities. Stud Sci Technol 3:1–6

    Google Scholar 

  18. Miyoshi T, Uchida M, Kaneniwa M, Yoshida G (2013) Collection and component analysis of aquatic plants with a scope for fermentative utilization. J Fish Technol 6:109–124

    Google Scholar 

  19. Somogyi M (1952) Notes on sugar determination. J Biol Chem 19:195

    Google Scholar 

  20. Uchida M, Nakayama A (1993) Isolation of Laminaria-frond decomposing bacteria from Japanese coastal waters. Nippon Suisan Gakkaishi 59:1865–1871

    Article  Google Scholar 

  21. Uchida M, Maeda T, Shiba T (2002) Phylogenic analysis of three marine bacteria that have an ability to decompose Laminaria japonica. Fish Sci 68:703–705

    Article  CAS  Google Scholar 

  22. Matsushima R, Danno H, Uchida M, Ishihara K, Suzuki T, Kaneniwa M, Ohtsubo Y, Nagata Y, Tsuda M (2010) Analysis of extracellular alginate lyase and its gene from a marine bacterial strain, Pseudoalteromonas atlantica AR06. Appl Microbiol Biotechnol 86:567–576

    Article  CAS  PubMed  Google Scholar 

  23. Percival E (1979) Polysaccharides of green, red and brown seaweeds—their basic structure, biosynthesis and function. Br Phycol J 14:103–117

    Article  Google Scholar 

  24. Carl C, de Nys R, Paul NA (2014) The seeding and cultivation of a tropical species of filamentous Ulva for algal biomass production. PLoS One 9:e98700

    Article  PubMed Central  PubMed  Google Scholar 

  25. Hernandez I, Peralta G, PerezLlorens JL, Vergara JJ, Niell FX (1997) Biomass and dynamics of growth of Ulva species in Palmones river estuary. J Phycol 33:764–772

    Article  Google Scholar 

  26. Miller SM, Hurd CL, Wing SR (2011) Variations in growth, erosion, productivity, and morphology of Ecklonia radiata (Alariaceae; Laminariales) along a fjord in southern New Zealand. J Phycol 47:505–516

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naoto Urano.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Takagi, T., Uchida, M., Matsushima, R. et al. Comparison of ethanol productivity among yeast strains using three different seaweeds. Fish Sci 81, 763–770 (2015). https://doi.org/10.1007/s12562-015-0875-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12562-015-0875-6

Keywords

Navigation