Fisheries Science

, Volume 81, Issue 2, pp 267–281 | Cite as

The first record of a cupped oyster species Crassostrea dianbaiensis in the waters of Japan

  • Masashi Sekino
  • Hiroshi Ishikawa
  • Atushi Fujiwara
  • Ellen Flor C. Doyola-Solis
  • Maria Junemie Hazel Lebata-Ramos
  • Hiroyoshi Yamashita
Original Article Biology


With a combination of our mitochondrial and nuclear DNA data, we evidenced the occurrence of a Crassostrea oyster hitherto unrecognized in Japan. This species, C. dianbaiensis (named Sumizome-gaki in Japanese), was very recently described as a new “tropical” oyster, although we located it in a temperate water zone (southwestern coast of Shikoku Island, Japan). Our specimens bore a morphological resemblance to the slipper cupped oyster C. bilineata (syn. C. iredalei), consistent with their close phylogenetic relationship. Some of the shell characteristics represented in the original species description were not applicable to our specimens, especially in terms of the pattern of their inner-shell coloration. Our novel finding of C. dianbaiensis in Japan updated the taxon list of Japanese Crassostrea species.


Crassostrea bilineata Cytochrome c oxidase subunit I Internal transcribed spacer DNA barcoding Species diagnosis 



We express our gratitude to Drs. Takenori Sasaki and Yasuhiro Ito, the University Museum, the University of Tokyo, for their assistance in conserving our specimens (shells) at UMUT. We thank two anonymous reviewers and the subject editor for their suggestions and recommendations to improve the manuscript.

Supplementary material

12562_2014_838_MOESM1_ESM.pdf (211 kb)
Supplementary material 1 (PDF 211 kb)


  1. 1.
    Lam K, Morton B (2004) The oysters of Hong Kong (Bivalvia: Ostreidae and Gryphaeidae). Raffles B Zool 52:11–28Google Scholar
  2. 2.
    Hebert PDN, Cywinska A, Ball SL, DeWaard JR (2003) Biological identifications through DNA barcodes. Proc R Soc Lond B Biol Sci 270:313–321CrossRefGoogle Scholar
  3. 3.
    Lam K, Morton B (2003) Mitochondrial DNA and morphological identification of a new species of Crassostrea (Bivalvia: Ostreidae) cultured for centuries in the Perl River delta, Hong Kong, China. Aquaculture 228:1–13CrossRefGoogle Scholar
  4. 4.
    Boudry P, Heurtebise S, Lapègue S (2003) Mitochondrial and nuclear DNA sequence variation of presumed Crassostrea gigas and Crassostrea angulata specimens: a new oyster species in Hong kong? Aquaculture 228:15–25CrossRefGoogle Scholar
  5. 5.
    Wu X, Xiao S, Yu Z (2013) Mitochondrial DNA and morphological identification of Crassostrea zhanjiangensis sp. nov. (Bivalvia: Ostreidae): a new species in Zhanjiang, China. Aquat Living Resour 26:273–280CrossRefGoogle Scholar
  6. 6.
    Banks MA, Hedgecock D (1993) Discrimination between closely related Pacific oyster species (Crassostrea) via mitochondrial DNA sequences coding for large subunit rRNA. Mol Mar Biol Biotechnol 2:129–136PubMedGoogle Scholar
  7. 7.
    Yu Z, Kong X, Zhang L, Guo X, Xiang J (2003) Taxonomic status of four Crassostrea oysters from China as inferred from mitochondrial DNA sequences. J Shellfish Res 22:31–38Google Scholar
  8. 8.
    Lazoski C, Gusmão J, Boudry P, Solé-Cava AM (2011) Phylogeny and phylogeography of Atlantic oyster species: evolutionary history, limited genetic connectivity and isolation by distance. Mar Ecol Prog Ser 426:197–212CrossRefGoogle Scholar
  9. 9.
    Lapègue S, Batista FM, Heurtebise S, Yu Z, Boudry P (2004) Evidence for the presence of the Portuguese oyster, Crassostrea angulata, in northern China. J Shellfish Res 23:759–763Google Scholar
  10. 10.
    Melo CMR, Silva FC, Gomes CHAM, Solè-Cava AM, Lazoski C (2010) Crassostrea gigas in natural oyster banks in southern Brazil. Biol Invasions 12:441–449CrossRefGoogle Scholar
  11. 11.
    Hong J-S, Sekino M, Sato S (2012) Molecular species diagnosis confirmed the occurrence of Kumamoto oyster Crassostrea sikamea in Korean waters. Fish Sci 78:259–267CrossRefGoogle Scholar
  12. 12.
    Sekino M, Yamashita H (2013) Mitochondrial DNA barcoding for Okinawan oysters: a cryptic population of the Portuguese oyster Crassostrea angulata in Japanese waters. Fish Sci 79:61–76CrossRefGoogle Scholar
  13. 13.
    Harry HW (1985) Synopsis of the supra specific classification of living oysters (Bivalvia: Gryphaeidae and Ostreidae). Veliger 28:121–158Google Scholar
  14. 14.
    Inaba A, Torigoe K (2004) Oysters in the world, Part 2: systematic description of the recent oysters. Bull Nishinomiya Shell Mus 3 (in Japanese)Google Scholar
  15. 15.
    Huber M (2010) Compendium of bivalves. ConchBooks, HackenheimGoogle Scholar
  16. 16.
    Okutani T (2000) Marine mollusks in Japan. Tokai University Press, Kanagawa (in Japanese)Google Scholar
  17. 17.
    Xia J, Yu Z (2009) Identification of seven Crassostrea oysters from the South China Sea using PCR–RFLP analysis. J Molluscan Stud 75:139–146CrossRefGoogle Scholar
  18. 18.
    Liu J, Li Q, Kong L, Yu H, Zheng X (2011) Identifying the true oysters (Bivalvia: Ostreidae) with mitochondrial phylogeny and distance-based DNA barcoding. Mol Ecol Resour 11:820–830CrossRefPubMedGoogle Scholar
  19. 19.
    Xia J, Wu X, Xiao S, Yu Z (2014) Mitochondrial DNA and morphological identification of a newcupped oyster species Crassostrea dianbaiensis (Bivalvia:Ostreidae) in the South China Sea. Aquat Living Resour 27:41–48CrossRefGoogle Scholar
  20. 20.
    Folmer O, Black M, Hoeh W, Lutz R, Vrijenhoek R (1994) DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrate. Mol Mar Biol Biotechnol 3:294–299PubMedGoogle Scholar
  21. 21.
    Don RH, Cox PT, Wainwright BJ, Baker K, Mattick JS (1991) ‘Touchdown’ PCR to circumvent spurious priming during gene amplification. Nucleic Acids Res 19:4008CrossRefPubMedCentralPubMedGoogle Scholar
  22. 22.
    Sekino M, Sato S, Hong J-S, Li Q (2012) Contrasting pattern of mitochondrial population diversity between an estuarine bivalve, the Kumamoto oyster Crassostrea sikamea, and the closely related Pacific oyster C. gigas. Mar Biol 159:2757–2776CrossRefGoogle Scholar
  23. 23.
    Wu X, Li X, Li L, Xu X, Xia J, Yu Z (2012) New features of Asian Crassostrea oyster mitochondrial genomes: A novel alloacceptor tRNA gene recruitment and two novel ORFs. Gene 507:112–118CrossRefPubMedGoogle Scholar
  24. 24.
    Hedgecock D, Li G, Banks MA, Kain Z (1999) Occurrence of the Kumamoto oyster Crassostrea sikamea in the Ariake Sea, Japan. Mar Biol 133:65–68CrossRefGoogle Scholar
  25. 25.
    Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680CrossRefPubMedCentralPubMedGoogle Scholar
  26. 26.
    Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony method. Mol Biol Evol 28:2731–2739CrossRefPubMedCentralPubMedGoogle Scholar
  27. 27.
    Fitch WM (1977) On the problem of discovering the most parsimonious tree. Am Nat 111:223–257CrossRefGoogle Scholar
  28. 28.
    Saitou N, Nei M (1987) The neighbor-joining method:a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425PubMedGoogle Scholar
  29. 29.
    Nei M, Kumar S (2000) Molecular evolution and phylogenetics. Oxford University Press, NYGoogle Scholar
  30. 30.
    Kimura M (1980) A simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–220CrossRefPubMedGoogle Scholar
  31. 31.
    Wang H, Guo X, Zhang G, Zhang F (2004) Classification of Jinjiang oysters Crassostrea rivularis (Gould, 1861) from China, based on morphology and phylogenetic analysis. Aquaculture 242:137–155CrossRefGoogle Scholar
  32. 32.
    Álvarez I, Wendel JF (2003) Ribosomal ITS sequences and phylogenetic inference. Mol Phyl Evol 29:417–434CrossRefGoogle Scholar
  33. 33.
    Foighil DÓ, Gaffney PM, Wilbur AE, Hilbish TJ (1998) Mitochondrial cytochrome oxidase I gene sequences support an Asian origin for the Portuguese oyster Crassostrea angulata. Mar Biol 131:497–503CrossRefGoogle Scholar
  34. 34.
    Reece KS, Cordes JF, Stubbs JB, Hudson KL, Francis EA (2008) Molecular phylogenies help resolve taxonomic confusion with Asian Crassostrea oyster species. Mar Biol 153:709–721CrossRefGoogle Scholar
  35. 35.
    Melo AGC, Varela ES, Beasley CR, Schneider H, Sampaio I, Gaffney PM, Reece KS, Tagliaro CH (2010) Molecular identification, phylogeny and geographic distribution of Brazilian mangrove oysters (Crassostrea). Genet Mol Biol 33:564–572CrossRefPubMedCentralPubMedGoogle Scholar
  36. 36.
    Nei M (1987) Molecular evolutionary genetics. Columbia Univrsity Press, NYGoogle Scholar
  37. 37.
    Librado P, Rozas J (2009) DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25:1451–1452CrossRefPubMedGoogle Scholar
  38. 38.
    Stenzel HB (1971) Oysters. In: Moore RC (ed) Treatise on invertebrate paleontology, Part N, vol 3., Mollusca 6Bivalvia. Geological Society of America and Universityof Kansas Press, Kansas, pp N953–N1224Google Scholar
  39. 39.
    Ohlberger J, Brännström Å, Dieckmann U (2013) Adaptive phenotypic diversification along a temperature-depth gradient. Am Nat 183:359–373CrossRefGoogle Scholar
  40. 40.
    Habe T (1977) Taxonomy of Japanese Mollusks: Bivalvia and Scaphopoda. Hokuryukan, Tokyo (in Japanese)Google Scholar
  41. 41.
    Kubo H, Kurozumi T (1995) Marine and terrestrial mollusks in Okinawa. Okinawa Syuppan, Okinawa (in Japanese)Google Scholar
  42. 42.
    Higo S, Callomon P, Goto Y (1999) Catalogue and bibliographyof the marine shell-bearing Mollusca of Japan: Gastropoda, Bivalvia, Polyplacophora. Scaphopoda, Elle Scientific, OsakaGoogle Scholar
  43. 43.
    Nawa J (2009) Molluscan fauna of tidal flats in the Ryukyu Islands, Part 2: Okinawa, Miyako and Yaeyama Islands. Bull Nishinomiya Shell Mus 6. (in Japanese)Google Scholar
  44. 44.
    Wang H, Qian L, Liu X, Zhang G, Guo X (2010) Classification of a common cupped oyster from Southern China. J Shellfish Res 29:857–866CrossRefGoogle Scholar
  45. 45.
    Carlton JT (1985) Transoceanic and interoceanic dispersal of coastal marine organisms: the biology of ballast water. Oceanogr Mar Biol Annu Rev 23:313–371Google Scholar
  46. 46.
    Leung KMY, Dudgeon D (2008) Ecological risk assessment and management of exotic organisms associated with aquaculture activities. In: Bondad-Reantaso MGet al. (eds.) Understanding and Applying Risk Analysis in Aquaculture. FAO, Rome. pp 67–100Google Scholar
  47. 47.
    Bussarawit S, Cedhagen T, Shirayama Y, Torigoe K (2010) Field Guide to the Oyster Fauna of Thailand. Kyoto University Press, KyotoGoogle Scholar
  48. 48.
    Luikart G, England PR, Tallmon D, Jordan S, Taberlet P (2003) The power and promise of population genomics: from genotyping to genome typing. Nat Rev Genet 4:981–994CrossRefPubMedGoogle Scholar
  49. 49.
    Wu X, Xu X, Yu Z, Wei Z, Xia J (2010) Comparison of seven Crassostrea mitogenomes and phylogenetic analyses. Mol Phylogenet Evol 57:448–454CrossRefPubMedGoogle Scholar
  50. 50.
    Ren J, Liu X, Zhang G, Liu B, Guo X (2009) ‘Tandem duplication-random loss’ is not a real feature of oyster mitochondrial genomes. BMC Genom 10:84CrossRefGoogle Scholar
  51. 51.
    Yu H, Li Q (2011) Mutation and selection on the wobble nucleotide in tRNA anticodons in marine bivalve mitochondrial genomes. PLoS ONE 6:e16147CrossRefPubMedCentralPubMedGoogle Scholar
  52. 52.
    Varela ES, Beasley CR, Schneider H, Sampaio I, Marques-Silva NDS, Tagliaro CH (2007) Molecular phylogeny of mangrove oysters (Crassostrea) from Brazil. J Molluscan Stud 73:229–234CrossRefGoogle Scholar
  53. 53.
    Galvão MS, Pereira OM, Hilsdorf AWS (2013) Molecular identification and distribution of mangrove oysters (Crassostrea) in an estuarine ecosystem in Southeast Brazil: implications for aquaculture and fisheries management. Aquacult Res 44:1589–1601CrossRefGoogle Scholar
  54. 54.
    Milbury CA, Gaffney PM (2005) Complete mitochondrial DNA sequence of the eastern oyster Crassostrea virginica. Mar Biotechnol 7:697–712CrossRefPubMedGoogle Scholar

Copyright information

© Japanese Society of Fisheries Science 2014

Authors and Affiliations

  • Masashi Sekino
    • 1
  • Hiroshi Ishikawa
    • 2
  • Atushi Fujiwara
    • 1
  • Ellen Flor C. Doyola-Solis
    • 3
  • Maria Junemie Hazel Lebata-Ramos
    • 3
  • Hiroyoshi Yamashita
    • 4
  1. 1.Research Center for Aquatic Genomics, National Research Institute of Fisheries ScienceFisheries Research Agency of JapanYokohamaJapan
  2. 2.UwajimaJapan
  3. 3.Aquaculture DepartmentSoutheast Asian Fisheries Development Center (SEAFDEC)TigbauanPhilippines
  4. 4.FujisawaJapan

Personalised recommendations