Fisheries Science

, Volume 80, Issue 2, pp 353–362 | Cite as

The seagrass Zostera marina harbors growth-inhibiting bacteria against the toxic dinoflagellate Alexandrium tamarense

  • Yuka Onishi
  • Yuka Mohri
  • Akihiro Tuji
  • Kohei Ohgi
  • Atsushi Yamaguchi
  • Ichiro ImaiEmail author
Original Article Environment


Seagrasses are known to have allelopathic activity to reduce growth of phytoplankton. We found growth-inhibiting bacteria (strains E8 and E9) from Zostera marina possessing strong activity against the toxic dinoflagellate Alexandrium tamarense. Strain E9 markedly inhibited growth of A. tamarense even with initial inoculum size as small as 2.9 cells ml−1. This bacterium also had growth-inhibiting effects on the red-tide raphidophytes Chattonella antiqua and Heterosigma akashiwo, the dinoflagellate Heterocapsa circularisquama, and the diatom Chaetoceros mitra. Small subunit (SSU) ribosomal DNA (rDNA) sequencing analysis demonstrated that the most probable affiliation of these strains was Flavobacteriaceae, and proved that another inhibitory bacterial strain (E8) was the same species as strain E9. Two other bacterial strains (E4-2 and E10), showing different colony color and isolated from the same seagrass sample, revealed no growth-inhibiting activity. Interestingly, strain E4-2 showed the same sequences as E8 and E9 (100 %), and strain E10 matched E8 and E9 with 99.80 % similarity. Growth-inhibiting bacteria against the toxic dinoflagellate Alexandrium tamarense associated with seagrass, such as Flavobacterium spp. E8 and E9, are able to repress shellfish poisoning besides the allelopathic activity of seagrass itself.


Toxic blooms Alexandrium tamarense Algicidal bacteria Seagrass Zostera marina Mitigation Prevention 



We are grateful to Dr. Hiroyuki Munehara of Usujiri Marine Station, Field Science Center for Northern Biosphere, Hokkaido University, for his kind arrangement of seagrass sampling. We thank Mr. Kiyoshi Nomura for his technical assistance for sampling at Usujiri Port. This study was supported in part by the project of Hakodate Green Innovation of UMI (Universal Marine Industry).


  1. 1.
    Anderson DM, Tilman JA, Allan DC, Yves C, Estelle M, Marina M (2012) The globally distributed genus Alexandrium: multifaceted roles in marine ecosystems and impacts on human health. Harmful Algae 14:10–35PubMedCentralPubMedCrossRefGoogle Scholar
  2. 2.
    Hallegraeff GM (1993) A review of harmful algal blooms and their apparent global increase. Phycologia 32:79–99CrossRefGoogle Scholar
  3. 3.
    Azam F, Fenchel T, Field JG, Gray JS, Meyer-Reil LA, Thingstad F (1983) The ecological role of water-column microbes in the sea. Mar Ecol Prog Ser 10:257–263CrossRefGoogle Scholar
  4. 4.
    Imai I, Ishida Y, Sawayama S, Hata Y (1991) Isolation of marine gliding bacterium that kills Chattonella antiqua (Raphidophycase). Nippon Suisan Gakkaishi 57:1409Google Scholar
  5. 5.
    Imai I, Ishida Y, Hata Y (1993) Killing of marine phytoplankton by a gliding bacterium Cytophaga sp., isolated from the coastal sea of Japan. Mar Biol 116:527–532CrossRefGoogle Scholar
  6. 6.
    Fukami K, Yuzawa T, Nishijima T, Hata Y (1992) Isolation and properties of a bacterium inhibiting the growth of Gymnodinium nagasakiense. Nippon Suisan Gakkaishi 58:1073–1077CrossRefGoogle Scholar
  7. 7.
    Imai I, Kim MC, Nagasaki K, Itakura S, Ishida Y (1998) Relationships between dynamics of red tide-causing raphidophycean flagellates and algicidal micro-organism in the coastal sea of Japan. Phycol Res 46:139–146CrossRefGoogle Scholar
  8. 8.
    Kim MC, Yoshinaga I, Imai I, Nagasaki K, Itakura S, Ishida Y (1998) A close relationship between algicidal bacteria and termination of Heterosigma akashiwo (Raphidophyceae) blooms in Hiroshima Bay, Japan. Mar Ecol Prog Ser 170:25–32CrossRefGoogle Scholar
  9. 9.
    Fukami K, Nishijima T, Murata H, Doi S, Hata Y (1991) Distribution of bacteria influential on the development and the decay of Gymnodinium nagasakiense red tide and their effects on algal growth. Nippon Suisan Gakkaishi 57:2321–2326CrossRefGoogle Scholar
  10. 10.
    Imai I, Sunahara T, Nishikawa T, Hori Y, Kondo R, Hiroishi S (2001) Fluctuations of the red tide flagellates Chattonella spp. (Raphidophyceae) and the algicidal bacterium Cytophaga sp. in Seto Inland Sea, Japan. Mar Biol 138:1043–1049CrossRefGoogle Scholar
  11. 11.
    Ferrier M, Martin JL, Rooney-Varga JN (2002) Stimulation of Alexandrium fundyense growth by bacterial assemblages from the Bay of Fundy. J Appl Microbiol 92:1–12CrossRefGoogle Scholar
  12. 12.
    Yoshinaga I, Kawai T, Ishida Y (1997) Analysis of algicidal ranges of the bacteria killing the marine dinoflagellate Gymnodinium mikimotoi isolated from Tanabe Bay, Wakayama Pref, Japan. Fish Sci 63:94–98Google Scholar
  13. 13.
    Adachi M, Kanno T, Okamoto R, Itakura S, Yamaguchi M, Nishijima T (2003) Population structure of Alexandrium (Dinophyceae) cyst formation-promoting bacteria in Hiroshima Bay, Japan. Appl Environ Microbiol 69:6560–6568PubMedCentralPubMedCrossRefGoogle Scholar
  14. 14.
    Gallacher S, Flynn KJ, Franco JM, Buueggemann EE, Hines HB (1997) Evidence for production of paralytic shellfish toxins by bacteria associated with Alexandrium spp. (Dynophyta) in culture. Appl Environ Microbiol 63:239–245PubMedCentralPubMedGoogle Scholar
  15. 15.
    Nagai S, Imai I (1998) Enumeration of bacteria in seawater and sediment from the Seto Inland Sea of Japan that promote sperm formation in Coscinodiscus wailesii (Bacillariophyceae). Phycologia 37:363–368CrossRefGoogle Scholar
  16. 16.
    Williams SL, Heck KL (2001) Seagrass community ecology. In: Bertness M et al (eds) Marine community ecology. Sinauer, Sunderland, pp 317–337Google Scholar
  17. 17.
    Duarte CM, Middelburg J, Caraco N (2005) Major role of marine vegetation on the oceanic carbon cycle. Biogeosciences 2:1–8CrossRefGoogle Scholar
  18. 18.
    McGlathery KJ, Sundbäck K, Anderson IC (2007) Eutrophication in shallow coastal bays and lagoons: the role of plants in the coastal filter. Mar Ecol Prog Ser 348:1–18CrossRefGoogle Scholar
  19. 19.
    Laabir M, Grignon-Dubois M, Cecchi P, Rezzonico B, Rouquette M, Masseret E (2010) Allelopathic effects of Zostera spp. on the growth and photosynthetic activity of the toxic dinoflagellate Alexandrium catenella. In: Proceedings of the 4th Mediterranean Symposium on Marine Vegetation. Regional Activity Center for Specially Protected Areas, Yasmine-Hammamet, pp 187–188Google Scholar
  20. 20.
    Wit R, Troussellier M, Courties C, Buffan-Dubau E, Lemaire E (2012) Short-term interactions between phytoplankton and intertidal seagrass vegetation in a coastal lagoon (Bassin d’Arcachon, SW France). Hydrobiologia 699:55–68CrossRefGoogle Scholar
  21. 21.
    Imai I, Yamamoto T, Ishii K, Yamamoto K (2009) Promising prevention strategies for harmful red tides by seagrass beds as enormous sources of algicidal bacteria. In: Proceedings of 5th world fisheries congress. TERRAPUB, Tokyo, 6c_0995_133Google Scholar
  22. 22.
    Chen LCM, Edelstein T, McLachlan J (1969) Bonnemaisonia hamifera Hariot in nature and in culture. J Phycol 5:211–220CrossRefGoogle Scholar
  23. 23.
    Imai I, Itakura S, Matsuyama Y (1996) Selenium requirement for growth of a novel red tide flagellate Chattonella verruculosa (Raphidophyceae) in culture. Fish Sci 62:834–835Google Scholar
  24. 24.
    Koch AL (1994) Growth measurement. In: Gerhardt P, Murray RGE, Wood WS, Krieg NR (eds) Methods for general molecular bacteriology. Am. Soc. Microbiol., Washington, DC, pp 248–277Google Scholar
  25. 25.
    Imai I, Kim MC, Nagasaki K, Itakura S, Ishida Y (1998) Detection and enumeration of microorganisms that are lethal to harmful phytoplankton in coastal waters. Plankton Biol Ecol 45:19–29Google Scholar
  26. 26.
    Ishida Y, Eguchi M, Kadota H (1986) Existence of obligatory oligotrophic bacteria as a dominant population in South China Sea and the west Pacific Ocean. Mar Ecol Prog Ser 30:197–203CrossRefGoogle Scholar
  27. 27.
    Walsh PS, Metzger DA, Higuchi R (1991) Chelex 100 as a medium for simple extraction of DNA for PCR-based typing from forensic material. Biotechniques 10:506–513PubMedGoogle Scholar
  28. 28.
    Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739PubMedCentralPubMedCrossRefGoogle Scholar
  29. 29.
    Kim YS, Lee DS, Jeong SY, Lee WJ, Lee MS (2009) Isolation and characterization of a marine algicidal bacterium against the harmful Raphidophyceae Chattonella marina. J Microbiol 47:9–18PubMedCrossRefGoogle Scholar
  30. 30.
    Fukami K, Nishijima T, Ishida Y (1997) Stimulative and inhibitory effects of bacteria on the growth of microalgae. Hydrobiologia 358:185–191CrossRefGoogle Scholar
  31. 31.
    Mayali X (2007) Bacterial influence on the bloom dynamics of the dinoflagellate Lingulodinium polyedrum. Scripps Institution of Oceanography Technical Report, Scripps Institution of Oceanography, University of California, San Diego, p 154Google Scholar
  32. 32.
    Mayali X, Franks PJS, Tanaka Y, Azam F (2008) Bacteria-induced motility reduction in Lingulodinium polyedrum (Dinophyceae). J Phycol 44:923–928CrossRefGoogle Scholar
  33. 33.
    Su JQ, Yang XR, Zheng TL, Tian Y, Jiao NZ, Cai LZ, Hong HS (2007) Isolation and characterization of a marine algicidal bacterium against the toxic dinoflagellate Alexandrium tamarense. Harmful Algae 6:799–810CrossRefGoogle Scholar
  34. 34.
    Su JQ, Xiaoru Y, Yanyan Z, Tianling Z (2011) Marine bacteria antagonistic to the harmful algal bloom species Alexandrium tamarense (Dinophyceae). Biol Control 56:132–138CrossRefGoogle Scholar
  35. 35.
    Wang BX, Zhou YY, Bai SJ, Su JQ, Tian Y, Zheng TL, Yang XR (2010) A novel marine bacterium algicidal to the toxic dinoflagellate Alexandrium tamarense. Lett Appl Microbiol 51:552–557PubMedCrossRefGoogle Scholar
  36. 36.
    Bai SJ, Huang LP, Su JQ, Tian Y, Zheng TL (2011) Algicidal effects of a novel marine actinomycete on the toxic dinoflagellate Alexandrium tamarense. Curr Microbiol 62:1774–1781PubMedCrossRefGoogle Scholar
  37. 37.
    Amaro AM, Fuentes MS, Ogalde SR, Venegas JA, Suàerz-Isla AB (2005) Identification and characterization of potentially algal-lytic marine bacteria strongly associated with the toxic dinoflagellate Alexandrium catenella. J Eukaryot Microbiol 52:191–200PubMedCrossRefGoogle Scholar
  38. 38.
    Nagasaki K, Yamaguchi M, Imai I (2000) Algicidal activity of a killerbacterium against the harmful red tide dinoflagellate Heterocapsa circularisquama isolated from Ago Bay, Japan. Nippon Suisan Gakkaishi 66:666–673 (in Japanese with English abstract)CrossRefGoogle Scholar
  39. 39.
    Roth PB, Twiner MJ, Mikulski CM, Barnhorst AB, Doucette GJ (2008) Comparative analysis of two algicidal bacteria active against the red tide dinoflagellate Karenia brevis. Harmful Algae 7:682–691CrossRefGoogle Scholar
  40. 40.
    Fistarol GO, Catherine L, Karin R, Edna G (2004) Temporary cyst formation in phytoplankton: a response to allelopathic competitors? Environ Microbiol 6:791–798PubMedCrossRefGoogle Scholar
  41. 41.
    Lee SO, Kato J, Takiguchi T, Kuroda A, Ikeda T, Mitsutani A, Ohtake H (2000) Involvement of an extracellular protease in algicidal activity of the marine bacterium Pseudoalteromonas sp. strain A28. Appl Environ Microbiol 66:4334–4339PubMedCentralPubMedCrossRefGoogle Scholar
  42. 42.
    Wang B, Yang X, Lu J, Zhou Y, Su J, Tian Y, Zhang J, Wang G, Zheng T (2012) A marine bacterium producing protein with algicidal activity against Alexandrium tamarense. Harmful Algae 13:83–88CrossRefGoogle Scholar
  43. 43.
    Imai I, Ishida Y, Sakaguchi K, Hata Y (1995) Algicidal marine bacteria isolated from northern Hiroshima Bay, Japan. Fish Sci 61:628–636Google Scholar
  44. 44.
    Liu J, Lewitus AJ, Kempton JW, Wilde SB (2008) The association of algicidal bacteria and raphidophyte blooms in South Carolina brackish detention ponds. Harmful Algae 7:184–193CrossRefGoogle Scholar
  45. 45.
    Park JH, Yoshinaga I, Nishikawa T, Imai I (2008) Algicidal bacteria in particle-associated form and in free-living form during a diatom bloom in the Seto Inland Sea, Japan. Aquat Microb Ecol 60:151–161CrossRefGoogle Scholar
  46. 46.
    Yoshinaga I, Kim MC, Katanozaka N, Imai I, Uchida A, Ishida Y (1998) Population structure of algicidal marine bacteria targeting the red tide forming alga Heterosigma akashiwo (Raphidophyceae), determined by restriction fragment length polymorphism analysis of the bacterial 16S ribosomal RNA genes. Mar Ecol Prog Ser 170:33–44CrossRefGoogle Scholar
  47. 47.
    Imai I, Yamaguchi M (2012) Life cycle, physiology, ecology and red tide occurrences of the fish-killing raphidophyte Chattonella. Harmful Algae 14:46–70CrossRefGoogle Scholar
  48. 48.
    Yanagi T (2008) “Sato-Umi”-A new concept for sustainable fisheries. In: Tsukamoto T et al (eds) Fisheries for global welfare and environment. TERRAPUB, Tokyo, pp 351–358Google Scholar
  49. 49.
    Costanza R, Arge R, Groot R, Farberk S, Grasso M, Hannon B, Limburg K, Naeem S, O’Neill RV, Paruelo J, Raskin RG, Suttonkk P, Belt M (1997) The value of the world’s ecosystem services and natural capital. Nature 387:253–260CrossRefGoogle Scholar
  50. 50.
    Watson RA, Coles RG, Leelong WJ (1993) Simulation estimates of annual yield and landed value for commercial penaeid prawns from a tropical seagrass habitat. Aust J Mar Freshw Res 44:211–219CrossRefGoogle Scholar
  51. 51.
    Harrison PG, Chan AT (1980) Inhibition of the growth of micro-algae and bacteria by extracts of eelgrass (Zostera marina) leaves. Mar Biol 61:21–26CrossRefGoogle Scholar
  52. 52.
    Waycott M, Duarte CM, Carruthers TJB, Orth RJ, Dennison WC, Olyarnik S, Calladine A, Fourqurean JW, Heck KL, Hughes AR, Kendrick GA, Kenworthy WJ, Short FT, Williams SL (2009) Accelerating loss of seagrasses across the globe threatens coastal ecosystems. PNAS 106:12377–12381PubMedCentralPubMedCrossRefGoogle Scholar
  53. 53.
    Abdenadher M, Hamza A, Fekih W, Hannachi I, Bellaaj AZ, Bradai MN, Aleya L (2012) Factors determining the dynamics of toxic blooms of Alexandrium minutum during a 10-year study along the shallow southwestern Mediterranean coasts. Estuar Coast Shelf Sci 106:102–111CrossRefGoogle Scholar

Copyright information

© The Japanese Society of Fisheries Science 2014

Authors and Affiliations

  • Yuka Onishi
    • 1
  • Yuka Mohri
    • 2
  • Akihiro Tuji
    • 2
  • Kohei Ohgi
    • 1
  • Atsushi Yamaguchi
    • 1
  • Ichiro Imai
    • 1
    Email author
  1. 1.Plankton Laboratory, Graduate School of Fisheries SciencesHokkaido UniversityHakodateJapan
  2. 2.Department of BotanyNational Museum of Nature and ScienceTsukubaJapan

Personalised recommendations