Fisheries Science

, Volume 79, Issue 6, pp 999–1006 | Cite as

Toxicity of the antifouling biocide Sea-Nine 211 to marine algae, crustacea, and a polychaete

  • Toshimitsu Onduka
  • Daisuke Ojima
  • Mana Ito
  • Katsutoshi Ito
  • Kazuhiko Mochida
  • Kazunori Fujii
Original Article Environment


We evaluated the acute toxicity of the antifouling biocide Sea-Nine 211 to the algae Chaetoceros calcitrans, Dunaliella tertiolecta, Tetraselmis tetrathele, and Skeletonema costatum, the crustacea Tigriopus japonicus and Portunus trituberculatus, and the polychaete Perinereis nuntia. The algae, and especially the diatoms C. calcitrans and S. costatum, were sensitive to Sea-Nine 211 toxicity, with the average acute toxicity values being 0.32, 3.9, 1.6, 0.22, 1.6, 12, and 27 μg/l for C. calcitrans, D. tertiolecta, T. tetrathele, S. costatum, T. japonicus, P. trituberculatus, and P. nuntia, respectively. A sediment toxicity test for Sea-Nine 211 using the polychaete P. nuntia revealed demonstrated that the 14-day median lethal concentration was 110 μg/kg dry-wt sediment and that growth was the most sensitive indicator. The chronic toxicity values of Sea-Nine 211 for the diatoms C. calcitrans and S. costatum were within the range of reported Sea-Nine 211 concentrations in seawater in coastal Japan, and the toxicity values for P. nuntia were within the reported concentrations in sediment. Based on these results, Sea-Nine 211 may have toxic effects on some sensitive species residing in the coastal areas of Japan, but the ecological risk posed by Sea-Nine 211 would appear to be confined to a limited area of Japanese coastal waters.


Risk assessment Ecological toxicity Coastal area of Japan Perinereis nuntia Sediment toxicity test No-observed-effect concentration 



We are grateful to Ms. Miki Shoda and Ms. Chiaki Hiramoto (National Research Institute of Fisheries and Environment of Inland Sea) for their kind assistance. This study was supported in part by a grant-in-aid from the Fisheries Agency of the Ministry of Agriculture, Forestry and Fisheries, Japan.


  1. 1.
    Okamura H, Mieno H (2006) Present status of antifouling systems in Japan: tributyltin substitutes in Japan. In: Konstantinou IK (ed) Antifouling paint biocides: The handbook of environmental chemistry. Springer, Berlin, pp 201–212CrossRefGoogle Scholar
  2. 2.
    Shade WD, Hurt SS, Jacobson AH, Reinert KH (1993) Ecological risk assessment of a novel marine antifoulant. In: Gorsuch JW et al (eds) Environmental toxicology and risk assessment, 2nd edn. American Society for Testing and Materials, Philadelphia, pp 381–408CrossRefGoogle Scholar
  3. 3.
    Thomas KV, McHugh M, Waldock M (2002) Antifouling paint booster biocides in UK coastal waters: inputs, occurrence and environmental fate. Sci Total Environ 293:117–127PubMedCrossRefGoogle Scholar
  4. 4.
    Thomas K, McHugh M, Hilton M, Waldock M (2003) Increased persistence of antifouling paint biocides when associated with paint particles. Environ Pollut 123:153–161PubMedCrossRefGoogle Scholar
  5. 5.
    Harino H, Kitano M, Mori Y, Mochida K, Kakuno A, Arima S (2005) Degradation of antifouling booster biocides in water. J Mar Biol Assoc UK 85:33–38CrossRefGoogle Scholar
  6. 6.
    Martínez K, Ferrer I, Hernando MD, Fernández-Alba AR, Marcé RM, Borrull F, Barceló D (2001) Occurrence of antifouling biocides in the Spanish Mediterranean marine environment. Environ Technol 22:543–552PubMedCrossRefGoogle Scholar
  7. 7.
    Sakkas VA, Konstantinou I, Lambropoulou DA, Albanis TA (2002) Survey for the occurrence of antifouling paint booster biocides in the aquatic environment of Greece. Environ Sci Pollut Res 9:327–332CrossRefGoogle Scholar
  8. 8.
    Steen RJCA, Ariese F, Hattum B, Jacobsen J (2004) Monitoring and evaluation of the environmental dissipation of the marine antifoulant,5-dichloro-2-n-octyl-4 -isothiazolin-3-one (DCOIT) in a Danish Harbor. Chemosphere 57:513–521PubMedCrossRefGoogle Scholar
  9. 9.
    Harino H, Mori Y, Yamaguchi Y, Shibata K, Senda T (2005) Monitoring of antifouling booster biocides in water and sediment from the port of Osaka, Japan. Arch Environ Contam Toxicol 48:303–310PubMedCrossRefGoogle Scholar
  10. 10.
    Tsunemasa N, Hashimoto K, Yamamoka Y, Ueno H, Okamura H (2006) Contamination of an alternative antifoulant in coastal waters of Hiroshima Bay. J Environ Chem 16:201–211CrossRefGoogle Scholar
  11. 11.
    Harino H, Midorikawa S, Arai T, Ohji M, Cu ND, Miyazaki N (2006) Concentrations of booster biocides in sediment and clams from Vietnam. J Mar Biol Assoc UK 86:1163–1170CrossRefGoogle Scholar
  12. 12.
    Harino H, Ohji M, Wattayakorn G, Arai T, Rungsupa S, Miyazaki N (2006) Occurrence of antifouling biocides in sediment and green mussels from Thailand. Arch Environ Contam Toxicol 51:400–407PubMedCrossRefGoogle Scholar
  13. 13.
    Harino H, Arai T, Ohji M, Ismail AB, Miyazaki N (2009) Contamination profiles of antifouling biocides in selected coastal regions of Malaysia. Arch Environ Contam Toxicol 56:468–478PubMedCrossRefGoogle Scholar
  14. 14.
    Harino H, Arifin Z, Rumengan I, Arai T, Ohji M, Miyazaki N (2012) Distribution of antifouling biocides and perfluoroalkyl compounds in sediments from selected locations in Indonesian coastal waters. Arch Environ Contam Toxicol 63:13–21PubMedCrossRefGoogle Scholar
  15. 15.
    Harino H, Yamamoto Y, Eguchi S, Kawai S, Kurokawa Y, Arai T, Ohji M, Okamura H, Miyazaki N (2007) Concentrations of antifouling biocides in sediment and mussel samples collected from Otsuchi bay, Japan. Arch Environ Contam Toxicol 52:179–188PubMedCrossRefGoogle Scholar
  16. 16.
    Devilla R, Brown M, Donkin M, Tarran G, Aiken J, Readman J (2005) Impact of antifouling booster biocides on single microalgal species and on a natural marine phytoplankton community. Mar Ecol Prog Ser 286:1–12CrossRefGoogle Scholar
  17. 17.
    Myers JH, Gunthorpe L, Allinson G, Duda S (2006) Effects of antifouling biocides to the germination and growth of the marine macroalga, Hormosira banksii (Turner) Descaisne. Mar Pollut Bull 52:1048–1055PubMedCrossRefGoogle Scholar
  18. 18.
    Arrhenius A, Backhaus T, Grönvall F, Junghans M, Scholze M, Blanck H (2006) Effects of three antifouling agents on algal communities and algal reproduction: mixture toxicity studies with TBT, Irgarol, and Sea-Nine. Arch Environ Contam Toxicol 50:335–345PubMedCrossRefGoogle Scholar
  19. 19.
    Bellas J (2006) Comparative toxicity of alternative antifouling biocides on embryos and larvae of marine invertebrates. Sci Total Environ 367:573–585PubMedCrossRefGoogle Scholar
  20. 20.
    Tsunemasa N, Okamura H (2011) Effects of organotin alternative antifoulants on oyster embryo. Arch Environ Contam Toxicol 61:128–134PubMedCrossRefGoogle Scholar
  21. 21.
    Cima F, Ferrari G, Ferreira NGC, Rocha RJM, Serôdio J, Loureiro S, Calado R (2013) Preliminary evaluation of the toxic effects of the antifouling biocide Sea-Nine 211 in the soft coral Sarcophyton cf. glaucum (Octocorallia, Alcyonacea) based on PAM fluorometry and biomarkers. Mar Environ Res 83:16–22PubMedCrossRefGoogle Scholar
  22. 22.
    Willemsen PR, Overbeke K, Suurmond A (1998) Repetitive testing of TBTO, Sea-Nine 211 and farnesol using Balanus amphitrite (Darwin) cypris larvae: variability in larval sensitivity. Biofouling 12:133–147CrossRefGoogle Scholar
  23. 23.
    Mochida K, Amano H, Onduka T, Kakuno A, Fujii K (2010) Toxicity of 4,5-dichloro-2-n-octyl-3(2H)-isothiazolone (Sea-Nine 211) to two marine teleostean fishes. Jpn J Environ Toxicol 13:105–116Google Scholar
  24. 24.
    Ito M, Mochida K, Ito K, Onduka T, Fujii K (2013) Induction of apoptosis in testis of the marine teleost mummichog Fundulus heteroclitus after in vivo exposure to the antifouling biocide 4,5-dichloro-2-n-octyl-3(2H)-isothiazolone (Sea-Nine 211). Chemosphere 90:1053–1060PubMedCrossRefGoogle Scholar
  25. 25.
    Guillard RR, Ryther JH (1962) Studies of marine diatoms. I. Cyclotella nana Hustedt, and Detonula confervacea (Cleve) Gran. Can J Microbiol 8:229–239PubMedCrossRefGoogle Scholar
  26. 26.
    Harino H (2004) Occurrence and degradation of representative TBT free-antifouling biocides in aquatic environment. Coast Mar Sci 29:28–39Google Scholar
  27. 27.
    Association American Public Health (AAPH), Association American Water Works (AAWW), Federation Water Environment (1998) Procedure for preparing reconstituted seawater. In: Clesceri LS et al (eds) Standard methods for the examination of water and wastewater, 20th edn. AAPH/AAWW/Federal Water Environment, Washington, DC, pp 8–11Google Scholar
  28. 28.
    Onduka T, Mochida K, Harino H, Ito K, Kakuno A, Fujii K (2010) Toxicity of metal pyrithione photodegradation products to marine organisms with indirect evidence for their presence in seawater. Arch Environ Contam Toxicol 58:991–997PubMedCrossRefGoogle Scholar
  29. 29.
    Mochida K, Amano H, Onduka T, Kakuno A, Fujii K (2011) Toxicity and metabolism of copper pyrithione and its degradation product, 2,2-dipyridyldisulfide in a marine polychaete. Chemosphere 82:390–397PubMedCrossRefGoogle Scholar
  30. 30.
    Organization for Economic Cooperation and Development (OECD) (2000) Guidance document on aquatic toxicity testing of difficult substances and mixtures. Series on testing and assessment, no. 23. OECD, ParisGoogle Scholar
  31. 31.
    Onduka T, Kakuno A, Kono K, Ito K, Mochida K, Fujii K (2012) Toxicity of chlorothalonil to marine organisms. Fish Sci 78:1301–1308CrossRefGoogle Scholar
  32. 32.
    Hamilton M, Russo R, Thurston R (1977) Trimmed Spearman–Karber method for estimating median lethal concentrations in toxicity bioassays. Environ Sci Technol 11:714–719CrossRefGoogle Scholar
  33. 33.
    Hall LW, Giddings JM, Solomon KR, Balcomb R (1999) An ecological risk assessment for the use of Irgarol 1051 as an algaecide for antifoulant paints. Crit Rev Toxicol 29:367–437PubMedGoogle Scholar
  34. 34.
    Okamura H, Kitano S, Toyota S, Harino H, Thomas KV (2009) Ecotoxicity of the degradation products of triphenylborane pyridine (TPBP) antifouling agent. Chemosphere 74:1275–1278PubMedCrossRefGoogle Scholar
  35. 35.
    Moore D, Dillon T, Suedel B (1991) Chronic toxicity of tributyltin to the marine polychaete worm, Neanthes arenaceodentata. Aquat Toxicol 21:181–198CrossRefGoogle Scholar

Copyright information

© The Japanese Society of Fisheries Science 2013

Authors and Affiliations

  • Toshimitsu Onduka
    • 1
  • Daisuke Ojima
    • 1
    • 2
  • Mana Ito
    • 1
  • Katsutoshi Ito
    • 1
  • Kazuhiko Mochida
    • 1
  • Kazunori Fujii
    • 1
    • 3
  1. 1.National Research Institute of Fisheries and Environment of Inland SeaFisheries Research AgencyHatsukaichiJapan
  2. 2.Momoshima Station, National Research Institute of Fisheries and Environment of Inland SeaFisheries Research AgencyOnomichiJapan
  3. 3.Fisheries Research AgencyNishi-ku, YokohamaJapan

Personalised recommendations