Fisheries Science

, Volume 78, Issue 4, pp 911–921 | Cite as

Hepatoprotective action of dietary bluefin tuna skin proteins on CCl4-intoxicated mice

  • Teruyoshi Tanaka
  • Kenji Takahashi
  • Naoki Iwamoto
  • Yasuo Agawa
  • Yoshifumi Sawada
  • Yukihiro Yoshimura
  • Nobuhiro Zaima
  • Tatsuya Moriyama
  • Yukio Kawamura
Original Article Food Science and Technology

Abstract

We have shown that dietary bluefin tuna skin (TUS) protects against carbon tetrachloride (CCl4)-induced hepatic damage in mice. The CCl4-induced necrotic area was decreased in mice fed a TUS-containing diet. Consistent with the decreased necrotic area, dietary TUS markedly lowered the elevated serum aspartate aminotransferase (AST) and alanine aminotransferase (ALT) activities and the thiobarbituric acid-reactive substance (TBARS) formation induced by CCl4 injection. TUS diets also decreased phosphorylation of inhibitory kappa B-α and blocked the translocation of nuclear factor-kappa B to the nucleus. TUS is composed mainly (80.7 %) of type I collagen, and our results revealed that dietary tuna collagen peptides (TUCP) attenuated the increased hepatic necrotic area, serum AST and ALT activities, and liver TBARS levels induced by CCl4, similar to TUS, thus enabling us to attribute the hepatoprotective action of TUS in CCl4-intoxicated mice to tuna collagen. Therefore, TUS and TUCP may be potential food resources that are capable of alleviating hepatitis symptoms.

Keywords

Bluefin tuna Skin proteins Collagen Hepatitis Carbon tetrachloride 

Notes

Acknowledgments

This work was supported in part by a Grant-in-Aid for the Global COE Program from the Ministry of Education, Culture, Sports, Science and Technology of Japan.

References

  1. 1.
    Basu S (2003) Carbon tetrachloride-induced lipid peroxidation: eicosanoid formation and their regulation by antioxidant nutrients. Toxicology 189:113–127PubMedCrossRefGoogle Scholar
  2. 2.
    Campo GM, Avenoso A, Campo S, Nastasi G, Traina P, D’Ascola A, Rugolo CA, Calatroni A (2008) The antioxidant activity of chondroitin-4-sulphate, in carbon tetrachloride-induced acute hepatitis in mice, involves NF-kappaB and caspase activation. Br J Pharmacol 155:945–956PubMedCrossRefGoogle Scholar
  3. 3.
    Domitrović R, Jakovac H, Blagojević G (2011) Hepatoprotective activity of berberine is mediated by inhibition of TNF-α, COX-2, and iNOS expression in CCl4-intoxicated mice. Toxicology 280:33–43PubMedCrossRefGoogle Scholar
  4. 4.
    Floyd RA, Nagy I (1984) Formation of long-lived hydroxyl free radical adducts of proline and hydroxyproline in a Fenton reaction. Biochim Biophys Acta 790:94–97PubMedCrossRefGoogle Scholar
  5. 5.
    Forni LG, Packer JE, Slater TF, Willson RL (1983) Reaction of the trichloromethyl and halothane-derived peroxy radicals with unsaturated fatty acids: a pulse radiolysis study. Chem Biol Interact 45:171–177PubMedCrossRefGoogle Scholar
  6. 6.
    Gordon MK, Hahn RA (2010) Collagens. Cell Tissue Res 339:247–257PubMedCrossRefGoogle Scholar
  7. 7.
    Guillerminet F, Beaupied H, Fabien-Soule V, Tome D, Benhamou CL, Roux C, Blais A (2009) Hydrolyzed collagen improves bone metabolism and biomechanical parameters in ovariectomized mice: an in vitro and in vivo study. Bone 46:827–834PubMedCrossRefGoogle Scholar
  8. 8.
    Guzik TJ, Korbut R, Adamek-Guzik T (2003) Nitric oxide and superoxide in inflammation and immune regulation. J Physiol Pharmacol 54:469–487PubMedGoogle Scholar
  9. 9.
    Han SH, Uzawa Y, Moriyama T, Kawamura Y (2011) Effect of collagen peptide from bluefin tuna abdominal skin on cancer cells. Health 3:129–134CrossRefGoogle Scholar
  10. 10.
    He G, Karin M (2011) NF-κB and STAT3—key players in liver inflammation and cancer. Cell Res 21:159–168PubMedCrossRefGoogle Scholar
  11. 11.
    Hoek JB, Pastorino JG (2002) Ethanol, oxidative stress, and cytokine-induced liver cell injury. Alcohol 27:63–68PubMedCrossRefGoogle Scholar
  12. 12.
    Hutson PR, Crawford ME, Sorkness RL (2003) Liquid chromatographic determination of hydroxyproline in tissue samples. J Chromatogr B Life Sci 791:427–430Google Scholar
  13. 13.
    Hwang JH, Mizuta S, Yokoyama Y, Yoshinaka R (2007) Purification and characterization of molecular species of collagen in the skin of skate (Raja kenojei). Food Chem 100:921–925CrossRefGoogle Scholar
  14. 14.
    Ichikawa S, Morifuji M, Ohara H, Matsumoto H, Takeuchi Y, Sato K (2010) Hydroxyproline-containing dipeptides and tripeptides quantified at high concentration in human blood after oral administration of gelatin hydrolysate. Int J Food Sci Nutr 61:52–60PubMedCrossRefGoogle Scholar
  15. 15.
    Iwai K, Hasegawa T, Taguchi Y, Morimatsu F, Sato K, Nakamura Y, Higashi A, Kido Y, Nakabo Y, Ohtsuki K (2005) Identification of food-derived collagen peptides in human blood after oral ingestion of gelatin hydrolysates. J Agric Food Chem 53:6531–6536PubMedCrossRefGoogle Scholar
  16. 16.
    Jijon H, Allard B, Jobin C (2004) NF-kappaB inducing kinase activates NF-kappaB transcriptional activity independently of IkappaB kinase gamma through a p38 MAPK-dependent RelA phosphorylation pathway. Cell Signal 16:1023–1032PubMedGoogle Scholar
  17. 17.
    Karin M, Ben-Neriah Y (2000) Phosphorylation meets ubiquitination: the control of NF-kappaB activity. Annu Rev Immunol 18:621–663PubMedCrossRefGoogle Scholar
  18. 18.
    Kataoka T (2009) Chemical biology of inflammatory cytokine signaling. J Antibiot 62:655–667PubMedCrossRefGoogle Scholar
  19. 19.
    Kaul S, Sharma SS, Mehta IK (2008) Free radical scavenging potential of l-proline: evidence from in vitro assays. Amino Acids 34:315–320PubMedCrossRefGoogle Scholar
  20. 20.
    Kim HY, Park J, Lee KH, Lee DU, Kwak JH, Kim YS, Lee SM (2011) Ferulic acid protects against carbon tetrachloride-induced liver injury in mice. Toxicology 282:104–111PubMedCrossRefGoogle Scholar
  21. 21.
    Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 27:680–685CrossRefGoogle Scholar
  22. 22.
    Lin JS, Tom TC, Olcott HS (1974) Proline nitroxide. J Agric Food Chem 22:526–528CrossRefGoogle Scholar
  23. 23.
    Lin B, Zhang F, Yu Y, Jiang Q, Zhang Z, Wang J, Li Y (2011) Marine collagen peptides protect against early alcoholic liver injury in rats. Br J Nutr (in press)Google Scholar
  24. 24.
    Mico BA, Pohl LR (1983) Reductive oxygenation of carbon tetrachloride: trichloromethylperoxyl radical as a possible intermediate in the conversion of carbon tetrachloride to electrophilic chlorine. Arch Biochem Biophys 225:596–609PubMedCrossRefGoogle Scholar
  25. 25.
    Moncada S, Palmer RM, Higgs EA (1991) Nitric oxide: physiology, pathophysiology, and pharmacology. Pharmacol Rev 43:109–142PubMedGoogle Scholar
  26. 26.
    Nagai T, Ogawa T, Nakamura T, Ito T, Nakagawa H, Fujiki K, Nakao M, Yano T (1999) Collagen of edible jellyfish exumbrella. J Sci Food Agric 79:855–858CrossRefGoogle Scholar
  27. 27.
    Ohara H, Matsumoto H, Ito K, Iwai K, Sato K (2007) Comparison of quantity and structures of hydroxyproline-containing peptides in human blood after oral ingestion of gelatin hydrolysates from different sources. J Agric Food Chem 55:1532–1535PubMedCrossRefGoogle Scholar
  28. 28.
    Packer JE, Slater TF, Willson RL (1978) Reactions of carbon tetrachloride-related peroxy free radical (CCl3 ·O2) with amino acids: pulse radiolysis evidence. Life Sci 23:356–362CrossRefGoogle Scholar
  29. 29.
    Ramshaw JA, Shah NK, Brodsky B (1998) Gly-X-Y tripeptide frequencies in collagen: a context for host-guest triple-helical peptides. J Struct Biol 122:86–91PubMedCrossRefGoogle Scholar
  30. 30.
    Rigby BJ (1968) Amino-acid composition and thermal stability of the skin collagen of the Antarctic ice-fish. Nature 219:166–167PubMedCrossRefGoogle Scholar
  31. 31.
    Saiga A, Iwai K, Hayakawa T, Takahata Y, Kitamura S, Nishimura T, Morimatsu F (2008) Angiotensin I-converting enzyme-inhibitory peptides obtained from chicken collagen hydrolysate. J Agric Food Chem 56:9586–9591PubMedCrossRefGoogle Scholar
  32. 32.
    Saiga-Egusa A, Iwai K, Hayakawa T, Takahata Y, Morimatsu F (2009) Antihypertensive effects and endothelial progenitor cell activation by intake of chicken collagen hydrolysate in pre- and mild-hypertension. Biosci Biotechnol Biochem 73:422–424PubMedCrossRefGoogle Scholar
  33. 33.
    Tacke F, Luedde T, Trautwein C (2009) Inflammatory pathways in liver homeostasis and liver injury. Clin Rev Allergy Immunol 36:4–12PubMedCrossRefGoogle Scholar
  34. 34.
    Wu J, Fujioka M, Sugimoto K, Mu G, Ishimi Y (2004) Assessment of effectiveness of oral administration of collagen peptide on bone metabolism in growing and mature rats. J Bone Miner Metab 22:547–553PubMedCrossRefGoogle Scholar
  35. 35.
    Zabłocka A, Janusz M, Macała J, Lisowski J (2005) A proline-rich polypeptide complex and its nonapeptide fragment inhibit nitric oxide production induced in mice. Regul Pept 125:35–39PubMedCrossRefGoogle Scholar
  36. 36.
    Zabłocka A, Ogorzałek A, Macała J, Janusz M (2010) A proline-rich polypeptide complex (PRP) influences inducible nitric oxide synthase in mice at the protein level. Nitric Oxide 23:20–25PubMedCrossRefGoogle Scholar
  37. 37.
    Zabłocka A, Siednienko J, Mitkiewicz M, Gorczyca WA, Lisowski J, Janusz M (2010) Proline-rich polypeptide complex (PRP) regulates secretion of inflammatory mediators by its effect on NF-kappaB activity. Biomed Pharmacother 64:16–20PubMedCrossRefGoogle Scholar

Copyright information

© The Japanese Society of Fisheries Science 2012

Authors and Affiliations

  • Teruyoshi Tanaka
    • 1
  • Kenji Takahashi
    • 1
  • Naoki Iwamoto
    • 1
  • Yasuo Agawa
    • 2
  • Yoshifumi Sawada
    • 2
  • Yukihiro Yoshimura
    • 1
  • Nobuhiro Zaima
    • 1
  • Tatsuya Moriyama
    • 1
  • Yukio Kawamura
    • 1
  1. 1.Department of Applied Biological Chemistry, Graduate School of AgricultureKinki UniversityNaraJapan
  2. 2.Ohshima Experiment Station, Fisheries LaboratoriesKinki UniversityHigashimuroJapan

Personalised recommendations