Advertisement

Fisheries Science

, Volume 78, Issue 1, pp 139–146 | Cite as

Comparison of the amount of thiotrophic symbionts in the deep-sea mussel Bathymodiolus septemdierum under different sulfide levels using fluorescent in situ hybridization

  • Masaru Fujinoki
  • Tomoko Koito
  • Suguru Nemoto
  • Mitsugu Kitada
  • Yoko Yamaguchi
  • Susumu Hyodo
  • Hideki Numanami
  • Nobuyuki Miyazaki
  • Koji InoueEmail author
Original Article Chemistry and Biochemistry

Abstract

Various invertebrates inhabiting hydrothermal vents harbor thiotrophic endosymbionts that provide the host with nutrients and are possibly involved in the detoxification of harmful sulfides. In this study, we first determined the partial 16S rRNA gene sequence of the thiotrophic symbiont of the deep-sea mussel Bathymodiolus septemdierum, a dominant species at hydrothermal vents in the Izu–Ogasawara (Bonin) area. We then designed a new probe, Bsob692, for fluorescent in situ hybridization (FISH) using regions completely conserved among thiotrophic symbionts of all bathymodiolin mussels and established the protocol for FISH to compare the distribution and amount of the symbiont using an image analysis program that is commercially available. We compared fluorescent intensity in the gill of the mussels collected at different sites and found a higher intensity in specimens collected from a site with higher sulfide concentration. We also compared mussels reared in the presence and absence of sulfide and found that the former had a higher fluorescent intensity.

Keywords

Chemosynthetic bacteria Fluorescent in situ hybridization (FISH) Hydrothermal vents Sulfide Symbiosis 

Notes

Acknowledgments

We thank the crew of R/V Natsushima and ROV Hyper-Dolphin for their help during the cruise NT08-07. We also thank the crew of Tanshu-Maru. This work was supported by KAKENHI (nos. 19380110 and 22380107).

References

  1. 1.
    Dubilier N, Bergin C, Lott C (2008) Symbiotic diversity in marine animals: the art of harnessing chemosynthesis. Nat Rev 6:725–740CrossRefGoogle Scholar
  2. 2.
    Van Dover CL (2000) The ecology of deep-sea hydrothermal vents. Princeton University Press, New JerseyGoogle Scholar
  3. 3.
    Amann RI, Binder BJ, Olson RJ, Chisholm SW, Devereux R, Stahl DA (1990) Combination of 16S rRNA-targeted oligonucleotide probes with flow cytometry for analyzing mixed microbial populations. Appl Environ Microbiol 56:1919–1925PubMedGoogle Scholar
  4. 4.
    Heinz E, Kolarov I, Kästner C, Toenshoff ER, Wagner M, Horn M (2007) An Acanthamoeba sp. containing two phylogenetically different bacterial endosymbionts. Environ Microbiol 9:1604–1609PubMedCrossRefGoogle Scholar
  5. 5.
    von Dohlen CD, Kohler S, Alsop ST, McManus WR (2001) Mealybug β-proteobacterial endosymbionts contain γ-proteobacterial symbionts. Nature 412:433–435CrossRefGoogle Scholar
  6. 6.
    Blazejak A, Erseus C, Amann R, Dubilier N (2005) Coexistence of bacterial sulfide oxidizers, sulfate reducers, and spirochetes in a gutless worm (Oligochaeta) from the Peru margin. Appl Environ Microbiol 71:1553–1561PubMedCrossRefGoogle Scholar
  7. 7.
    Borowski C, Giere O, Krieger J, Amann R, Dubilier N (2002) New aspects of the symbiosis in the provannid snail Ifremeria nautilei from the North Fiji Back Arc Basin. Cah Biol Mar 43:321–324Google Scholar
  8. 8.
    Fujiwara Y, Takai K, Uematsu K, Tsuchida S, Hunt JC, Hashimoto J (2000) Phylogenetic characterization of endosymbionts in three hydrothermal vent mussels: influence on host distribution. Mar Ecol Prog Ser 208:147–155CrossRefGoogle Scholar
  9. 9.
    Suzuki Y, Sasaki T, Suzuki M, Nogi Y, Miwa T, Takai K, Nealson KH, Horikoshi K (2005) Novel chemoautotrophic endosymbiosis between a member of the Epsilonproteobacteria and the hydrothermal-vent gastropod Alviniconcha aff. hessleri (Gastropoda: Provannidae) from the Indian Ocean. Appl Environ Microbiol 71:5440–5450PubMedCrossRefGoogle Scholar
  10. 10.
    Suzuki Y, Kojima S, Watanabe H, Suzuki M, Tsuchida S, Nunoura T, Hirayama H, Takai K, Nealson KH, Horikoshi K (2006) Single host and symbiont lineages of hydrothermal-vent gastropods Ifremeria nautilei (Provannidae): biogeography and evolution. Mar Ecol Prog Ser 315:167–175CrossRefGoogle Scholar
  11. 11.
    Tokuda G, Yamada A, Nakano K, Arita NO, Yamasaki H (2008) Colonization of Sulfurovum sp. on the gill surfaces of Alvinocaris longirostris, a deep-sea hydrothermal vent shrimp. Mar Ecol 29:1–9CrossRefGoogle Scholar
  12. 12.
    Bettencourt R, Dando P, Rosa D, Riou V, Colaco A, Sarrazin J, Sarradin PM, Santos RS (2008) Changes of gill and hemocyte- related bio-indicators during long term maintenance of the vent mussel Bathymodiolus azoricus held in aquaria at atmospheric pressure. Comp Biochem Physiol Part A 150:1–7CrossRefGoogle Scholar
  13. 13.
    Duperron S, Nadalig T, Caprais JC, Sibuet M, Fiala-Médioni A, Amann R, Dubilier N (2005) Dual symbiosis in a Bathymodiolus mussel from a methane seep on the Gabon continental margin (South East Atlantic): 16S rRNA phylogeny and distribution of the symbionts in the gills. Appl Environ Microbiol 71:1694–1700PubMedCrossRefGoogle Scholar
  14. 14.
    Duperron S, Bergin C, Zielinski F, Blazejak A, Pernthaler A, McKiness ZP, DeChaine E, Cavanaugh CM, Dubilier N (2006) A dual symbiosis shared by two mussel species, Bathymodiolus azoricus and Bathymodiolus puteoserpentis (Bivalvia: Mytilidae), from hydrothermal vents along the northern Mid-Atlantic Ridge. Environ Microbiol 8:1441–1447PubMedCrossRefGoogle Scholar
  15. 15.
    Duperron S, Sibuet M, MacGregor JB, Kuypers MMM, Fisher CR, Dubilier N (2007) Diversity, relative abundance and metabolic potential of bacterial endosymbionts in three Bathymodiolus mussel species from cold seeps in the Gulf of Mexico. Environ Microbiol 9:1423–1438PubMedCrossRefGoogle Scholar
  16. 16.
    Halary S, Riou V, Gail F, Boudier T, Duperron S (2008) 3D FISH for the quantification of methane- and sulphur-oxidizing endosymbionts in bacteriocytes of the hydrothermal vent mussel Bathymodiolus azoricus. ISME J 2:284–292PubMedCrossRefGoogle Scholar
  17. 17.
    Pruski AM, Fiala-Médioni A (2003) Stimulatory effect of sulphide on thiotaurine synthesis in three hydrothermal-vent species from East Pacific Rise. J Exp Biol 206:2923–2930PubMedCrossRefGoogle Scholar
  18. 18.
    Inoue K, Tsukuda K, Koito T, Miyazaki Y, Hosoi M, Kado R, Miyazaki N, Toyohara H (2008) Possible role of a taurine transporter in the deep-sea mussel Bathymodiolus septemdierum in adaptation to hydrothermal vents. FEBS Lett 582:1542–1546PubMedCrossRefGoogle Scholar
  19. 19.
    Koito T, Nakamura-Kusakabe I, Yoshida T, Maruyama T, Omata T, Miyazaki N, Inoue K (2010) The effect of long-term exposure to sulfides on taurine transporter gene expression in the gill of the deep-sea mussel Bathymodiolus platifrons, which harbors a methanotrophic symbiont. Fish Sci 76:381–388CrossRefGoogle Scholar
  20. 20.
    Koito T, Morimoto S, Toyohara H, Yoshida T, Jimbo M, Maruyama T, Miyazaki N, Inoue K (2010) Decline in taurine transporter mRNA and thioautotrophic bacterial 16S rDNA levels after transplantation of the hydrothermal-vent mussel Bathymodiolus septemdierum to a non-vent position. Cah Biol Mar 51:429–433Google Scholar
  21. 21.
    Lane DJ (1991) 16S/23S Sequencing. In: Stackebrandt E, Goodfellow M (eds) Nucleic acid techniques in bacterial systematics. Wiley, Chichester, pp 115–175Google Scholar
  22. 22.
    Lathe R (1985) Synthetic oligonucleotide probes deduced from amino acid sequence data. Theoretical and practical considerations. J Mol Biol 183:1–12PubMedCrossRefGoogle Scholar
  23. 23.
    Macalady JL, Lyon EH, Koffman B, Albertson LK, Meyer K, Galdenzi S, Mariani S (2006) Dominant microbial populations in limestone-corroding stream biofilms, Frasassi Cave System, Italy. Appl Environ Microbiol 72:5596–5609PubMedCrossRefGoogle Scholar
  24. 24.
    Manz W, Amann R, Ludwig W, Wagner M, Schleifer KH (1992) Phylogenetic oligodeoxynucleotide probes for the major subclasses of Proteobacteria: problems and solutions. Syst Appl Microbiol 15:593–600Google Scholar
  25. 25.
    Kádár E, Bettencourt R, Costa V, Santos RS, Lobo-da-Chunha A, Dando P (2005) Experimentally induced endosymbiont loss and re-acquirement in the hydrothermal vent bivalve Bathymodiolus azoricus. J Exp Mar Biol Ecol 318:99–110CrossRefGoogle Scholar

Copyright information

© The Japanese Society of Fisheries Science 2011

Authors and Affiliations

  • Masaru Fujinoki
    • 1
    • 2
  • Tomoko Koito
    • 1
    • 2
  • Suguru Nemoto
    • 3
  • Mitsugu Kitada
    • 3
  • Yoko Yamaguchi
    • 2
  • Susumu Hyodo
    • 2
  • Hideki Numanami
    • 4
  • Nobuyuki Miyazaki
    • 1
    • 2
  • Koji Inoue
    • 1
    • 2
    Email author
  1. 1.Graduate School of Frontier SciencesThe University of TokyoKashiwaJapan
  2. 2.Atmosphere and Ocean Research InstituteThe University of TokyoKashiwaJapan
  3. 3.Enoshima AquariumFujisawaJapan
  4. 4.Tokyo Kasei-Gakuin UniversityMachidaJapan

Personalised recommendations