Fisheries Science

, Volume 76, Issue 6, pp 1015–1021

Prebiotic effect of glycerol galactoside isolated from color-faded nori in rats

  • Kenji Ishihara
  • Chiaki Oyamada
  • Yoko Sato
  • Toshiyuki Suzuki
  • Masaki Kaneniwa
  • Hiromi Kunitake
  • Toshihiko Muraoka
Original Article Food Science and Technology


Glycerol galactoside (GG; floridoside: 2-O-glycerol-α-d-galactopyranoside, and isofloridoside: 1-O-glycerol-α-d-galactopyranoside) is known to be a component of edible red seaweed nori. Recently, we have found that low-quality nori (color-faded nori), which has a low protein content, contains a large quantity of GG. From further studies, we have also found that GG has prebiotic characteristics in vitro. In this study, we evaluated the in vivo prebiotic activity of GG in rats. Dietary GG selectively increased the cecal Bifidobacterium count in rats. Other indices of prebiotics, such as pH of cecal content, organic acid concentrations, and fecal weight, also supported the existence of prebiotic activity of GG. The present data will also contribute to the development of a new method of utilizing color-faded nori as a health-promoting foodstuff.


Glycerol galactoside Floridoside Nori Prebiotics 



Colony-forming unit




Glycerol galactoside


  1. 1.
    Mumford TF Jr, Miura A (1988) Porphyra as food: cultivation and economics. In: Lembi CA, Waaland JR (eds) Algae and human affairs. Cambridge University Press, Cambridge, pp 91–93Google Scholar
  2. 2.
    Noda H, Amano H, Arashima K, Hashimoto S, Nisizawa K (1989) Antitumor activity of polysaccharides and lipids from marine algae. Nippon Suisan Gakkaishi 55:1265–1271Google Scholar
  3. 3.
    Yoshizawa Y, Enomoto A, Todoh H, Ametani A, Kaminogawa S (1993) Activation of murine macrophages by polysaccharide fractions from marine algae (Porphyra yezoensis). Biosci Biotechnol Biochem 57:1862–1866CrossRefPubMedGoogle Scholar
  4. 4.
    Ishihara K, Oyamada C, Matsushima R, Murata M, Muraoka T (2005) Inhibitory effect of porphyran, prepared from dried “Nori,” on contact hypersensitivity in mice. Biosci Biotechnol Biochem 69:1824–1830Google Scholar
  5. 5.
    Zhang Q, Li N, Zhou G, Lu X, Xu Z, Li Z (2003) In vivo antioxidant activity of polysaccharide fraction from Porphyra haitanesis (Rhodophyta) in aging mice. Pharmacol Res 48:151–155CrossRefPubMedGoogle Scholar
  6. 6.
    Morita K, Tobiishi K (2002) Increasing effect of nori on the fecal excretion of dioxin by rats. Biosci Biotechnol Biochem 66:2306–2313CrossRefPubMedGoogle Scholar
  7. 7.
    Okai Y, Higashi-Okai K, Yano Y, Otani S (1996) Identification of antimutagenic substances in an extract of edible red alga, Porphyra tenera (Asakusa-nori). Cancer Lett 100:235–240CrossRefPubMedGoogle Scholar
  8. 8.
    Noda H, Amano H, Abo K, Horiguchi Y (1981) Sugars, organic acids, and minerals of “nori” the dried laver Porphyra spp. Nippon Suisan Gakkaishi 47:57–62Google Scholar
  9. 9.
    Ishihara K, Oyamada C, Sato Y, Danno H, Kimiya T, Kaneniwa M, Kunitake H, Muraoka T (2008) Relationships between quality parameters and content of glycerol galactoside and porphyra-334 in dried laver nori Porphyra yezoensis. Fish Sci 74:167–173CrossRefGoogle Scholar
  10. 10.
    Muraoka T, Ishihara K, Oyamada C, Kunitake H, Hirayama I, Kimura T (2008) Fermentation properties of low-quality red alga susabinori Porphyra yezoensis by intestinal bacteria. Biosci Biotechnol Biochem 72:1731–1739CrossRefPubMedGoogle Scholar
  11. 11.
    Gibson GR, Roberfroid MB (1995) Dietary modulation of the human colonic microbiota. Introducing the concept of prebiotics. J Nutr 125:1401–1412PubMedGoogle Scholar
  12. 12.
    Kelly G (2008) Inulin-type prebiotics––a review: part 1. Altern Med Rev 13:315–329PubMedGoogle Scholar
  13. 13.
    Ten Bruggencate SJM, Bovee-Oudenhoven IMJ, Lettink-Wissink LG, van der Meer R (2005) Dietary fructooligosaccharides increase intestinal permeability in rats. J Nutr 135:837–842PubMedGoogle Scholar
  14. 14.
    Matsuki T, Watanabe K, Fujimoto J, Kado Y, Takada T, Matsumoto K, Tanaka R (2004) Use of 16S rRNA gene-targeted group-specific primers for real-time PCR analysis of predominant bacteria in human feces. Appl Environ Microbiol 70:7220–7228CrossRefPubMedGoogle Scholar
  15. 15.
    Ezaki T, Xu H-X, Li Z-Y (1999) Quantitative amplification of anaerobic cocci and enterococci from normal human feces using light cycler (Chap 8). In: Mitsuoka T (ed) Molecular ecological detection and identification of intestinal microflora. Japan Scientific Societies Press, Tokyo, pp 123–136Google Scholar
  16. 16.
    Lyons SR, Griffen AL, Leys EJ (2000) Quantitative real-time PCR for Porphyromonas gingivalis and total bacteria. J Clin Microbiol 38:2362–2365PubMedGoogle Scholar
  17. 17.
    Kawadu D, Tanaka M, Fujii T (1995) Effect of polysaccharides of “Susabinori” Porphyra yezoensis on intestinal flora (in Japanese with English abstract). Nippon Suisan Gakkaishi 61:59–69Google Scholar
  18. 18.
    Suetsuna K (1998) Purification and identification of angiotensin I-converting enzyme inhibitors from the red alga Porphyra yezoensis. J Mar Biotechnol 6:163–167PubMedGoogle Scholar
  19. 19.
    Takenaka S, Sugiyama S, Ebara S, Miyamoto E, Abe K, Tamura Y, Watanabe F, Tsuyama S, Nakano Y (2001) Feeding dried purple laver (nori) to vitamin B12-deficient rats significantly improves vitamin B12 status. Br J Nutr 85:699–703CrossRefPubMedGoogle Scholar
  20. 20.
    Eitsuka T, Nakagawa K, Igarashi M, Miyazawa T (2004) Telomerase inhibition by sulfoquinovosyldiacylglycerol from edible purple laver (Porphyra yezoensis). Cancer Lett 212:15–20CrossRefPubMedGoogle Scholar
  21. 21.
    Louis P, Flint HJ (2009) Diversity, metabolism and microbial ecology of butyrate-producing bacteria from the human large intestine. FEMS Microbiol Lett 294:1–8CrossRefPubMedGoogle Scholar
  22. 22.
    Hamer HM, Jonkers D, Venema K, Vanhoutvin S, Troost FJ, Brummer R-J (2008) Review article: the role of butyrate on colonic function. Aliment Pharmacol Ther 27:104–119CrossRefPubMedGoogle Scholar
  23. 23.
    Fukushima A, Ohta A, Sakai K, Sakuma K (2005) Expression of calbindin-D9k, VDR and Cdx-2 messenger RNA in the process by which fructooligosaccharides increase calcium absorption in rats. J Nutr Sci Vitaminol 51:426–432PubMedGoogle Scholar
  24. 24.
    Fujitani S, Ueno K, Kamiya T, Tsukahara T, Ishihara K, Kitabayashi T, Itabashi K (2007) Increased number of CCR4-positive cells in the duodenum of ovalbumin-induced food allergy model Nc/jic mice and anti allergic activity of fructooligosaccharides. Allergol Int 56:131–138CrossRefPubMedGoogle Scholar
  25. 25.
    Nakamura Y, Nosaka S, Suzuki M, Nagafuchi S, Takahashi T, Yajima T, Takenouchi-Ohkubo N, Iwase T, Moro I (2004) Dietary fructooligosaccharides up-regulate immunoglobulin A response and polymeric immunoglobulin receptor expression in intestines of infant mice. Clin Exp Immunol 137:52–58CrossRefPubMedGoogle Scholar
  26. 26.
    Bondu S, Kervarec N, Deslandes E, Pichon R (2007) Separation of floridoside and isofloridosides by HPLC and complete 1H and 13C NMR spectral assignments for d-isofloridoside. Carbohydr Res 342:2470–2473CrossRefPubMedGoogle Scholar
  27. 27.
    O’Sullivan L, Murphy B, McLoughlin P, Duggan P, Lawlor PG, Hughes H, Gardiner GE (2010) Prebiotics from marine macroalgae for human and animal health applications. Mar Drugs 8:2038–2064CrossRefPubMedGoogle Scholar
  28. 28.
    Isagai H, Isobe T (2006) Effect on metal elements on fading laver in the Ariake Sea (in Japanese with English abstract). Bunseki Kagaku 55:999–1002CrossRefGoogle Scholar

Copyright information

© The Japanese Society of Fisheries Science 2010

Authors and Affiliations

  • Kenji Ishihara
    • 1
  • Chiaki Oyamada
    • 1
  • Yoko Sato
    • 1
  • Toshiyuki Suzuki
    • 1
  • Masaki Kaneniwa
    • 1
  • Hiromi Kunitake
    • 2
  • Toshihiko Muraoka
    • 2
  1. 1.Functional Biochemistry Section, Marine Biochemistry DivisionNational Research Institute of Fisheries ScienceYokohamaJapan
  2. 2.Food Science Research DivisionKumamoto Prefectural Fisheries Research CenterKamiamakusaJapan

Personalised recommendations