Statistics in Biosciences

, Volume 4, Issue 2, pp 282–299 | Cite as

Analysis for temporal gene expressions under multiple biological conditions

  • Hong-Bin Fang
  • Dianliang Deng
  • Guo-Liang Tian
  • Lixin Shen
  • Kangmin Duan
  • Jiuzhou Song
Article
  • 216 Downloads

Abstract

Temporal gene expression data are of particular interest to researchers as they contain rich information in characterization of gene function and have been widely used in biomedical studies and early cancer detection. However, the current temporal gene expressions usually have few measuring time series levels; extracting information and identifying efficient treatment effects without temporal information are still a problem. A dense temporal gene expression data set in bacteria shows that the gene expression has various patterns under different biological conditions. Instead of analyzing gene expression levels, in this paper we consider the relative change-rates of gene in the observation period. We propose a non-linear regression model to characterize the relative change-rates of genes, in which individual expression trajectory is modeled as longitudinal data with changeable variance and covariance structure. Then, based on the parameter estimates, a chi-square test is proposed to test the equality of gene expression change-rates. Furthermore, the Mahalanobis distance is used for the classification of genes. The proposed methods are applied to the data set of 18 genes in P. aeruginosa expressed in 24 biological conditions. The simulation studies show that our methods perform well for analysis of temporal gene expressions.

Keywords

Chi-square test Classification Longitudinal data analysis Mahalanobis distance Non-linear regression analysis Temporal gene expression 

References

  1. 1.
    Bar-Joseph Z, Gerber G, Simon I, Gifford DK, Jaakkola TS (2003) Comparing the continuous representation of times-series expression profiles to identify differentially expressed genes. Proc Natl Acad Sci USA 100:10146–10151 MathSciNetMATHCrossRefGoogle Scholar
  2. 2.
    Bjarnason J, Southward CM, Surette MG (2003) Genomic profiling of iron-responsive genes in Salmonella enterica serovar Typhimurium by high-throughput screening of a random promoter library. J Bacteriol 185:4973–4982 CrossRefGoogle Scholar
  3. 3.
    Cho RJ, Campbell MJ, Winzeler EA, Steinmetz L, Conway A, Wodicka L, Wolfsberg TG, Gabrielian AE, Landsman D, Lockhart DJ, Davis RW (1998) A genome-wide transcriptional analysis of the mitotic cell cycle. Mol Cell 2:65–73 CrossRefGoogle Scholar
  4. 4.
    Donoho DL, Johnstone IM (1994) Ideal spatial adaptation by wavelet shrinkage. Biometrika 81:425–455 MathSciNetMATHCrossRefGoogle Scholar
  5. 5.
    Draghici S, Kulaeva O, Hoff B, Petrov A, Shams S et al. (2003) Noise sampling method: An ANOVA approach allowing robust selection of differentially regulated genes measured by DNA microarrays. Bioinformatics 19:1348–1359 CrossRefGoogle Scholar
  6. 6.
    Duan K, Dammel C, Stein J, Rabin H, Surette MG (2003) Modulation of Pseudomonas aeruginosa gene expression by host microflora through interspecies communication. Mol Microbiol 50:1477–1491 CrossRefGoogle Scholar
  7. 7.
    Efron B, Tibshrani R, Goss V, Chu G (2001) Microarrays and their use in a comparative experiment. J Am Stat Assoc 96:1151–1160 MATHCrossRefGoogle Scholar
  8. 8.
    Eisen MB, Spellman PT, Brown PO, Botstein D (1998) Cluster analysis and display of genome-wide expression patterns. Proc Natl Acad Sci USA 95:14863–14868 CrossRefGoogle Scholar
  9. 9.
    Hong F, Li H (2006a) Functional hierarchical models for identifying genes with different time-course expression profiles. Biometrics 62:534–544 MathSciNetMATHCrossRefGoogle Scholar
  10. 10.
    Hong F, Li H (2006b) In discussion of “Hidden Markov model for microarray time course data in multiple biological conditions. J Am Stat Assoc 101:1331–1334 MathSciNetCrossRefGoogle Scholar
  11. 11.
    Kerr MK, Martin M, Churchill GA (2000) Analysis of variance for gene expression microarray data. J Comput Biol 7:819–837 CrossRefGoogle Scholar
  12. 12.
    Li H, Luan Y, Hong F, Li Y (2002) Statistical methods for analysis of time course gene expression data. Front Biosci 7:90–98 CrossRefGoogle Scholar
  13. 13.
    Liu X, Müller HG (2003) Modes and clustering for time-warped gene expression profile data. Bioinformatics 19:1937–1944 CrossRefGoogle Scholar
  14. 14.
    Liu X, Yang MCK (2009) Identifying temporally differentially expressed genes through functional principal components analysis. Biostatistics 10:667–679 CrossRefGoogle Scholar
  15. 15.
    Nettleton D (2006) In discussion of “Hidden Markov model for microarray time course data in multiple biological conditions. J Am Stat Assoc 101:1334–1338 MathSciNetCrossRefGoogle Scholar
  16. 16.
    Spellman PT, Sherlock G, Zhang MQ, Iyer VR, Anders K, Eisen MB, Brown PO, Botstein D, Futcher B (1998) Comprehensive identification of cell cycle-regulated genes of the yeast Saccharomyces cerevisiae by microarray hybridization. Mol Biol Cell 9:3273–3297 Google Scholar
  17. 17.
    Storey JD, Tibshirani R (2003) Statistical significance for genome-wide studies. Proc Natl Acad Sci USA 100:9440–9445 MathSciNetMATHCrossRefGoogle Scholar
  18. 18.
    Storey J, Xiao W, Leek JT, Dai JY, Davis RW (2005) A significance method for time course microarray experiments applied to two human studies. Proc Natl Acad Sci USA 102:12837–12842 CrossRefGoogle Scholar
  19. 19.
    Tanaka TS, Jaradat SA, Lim MK, Kargul GJ, Wang X et al. (2000) Genome-wide expression profiling of mid-gestation placenta and embryo using a 15,000 mouse developmental cDNA microarray. Proc Natl Acad Sci USA 97:9127–9132 CrossRefGoogle Scholar
  20. 20.
    Tusher VG, Tibshirani R, Chu G (2001) Significance analysis of microarrays applied to the ionizing radiation response. Proc Natl Acad Sci USA 98:5116–5121 MATHCrossRefGoogle Scholar
  21. 21.
    Wang J, Kim S (2003) Global analysis of dauer gene expression in C-aenorhabditis elegans. Development 130:1621–1634 CrossRefGoogle Scholar
  22. 22.
    Wei Z, Li H (2007) A Markov random field model for network-based analysis of genomic data. Bioinformatics 23:1537–1544 MathSciNetCrossRefGoogle Scholar
  23. 23.
    Wei Z, Li H (2008) A hidden spatial-temporal Markov random field model for network-based analysis of time course gene expression data. Ann Appl Stat 2:408–429 MathSciNetMATHCrossRefGoogle Scholar
  24. 24.
    Yao F, Müller HC, Wang J-L (2005) Functional data analysis for sparse longitudinal data. J Am Stat Assoc 100:577–590 MATHCrossRefGoogle Scholar
  25. 25.
    Yeung KY, Ruzzo WL (2001) Principal component analysis for clustering gene expression data. Bioinformatics 17:763–774 CrossRefGoogle Scholar
  26. 26.
    Yuan M (2008) Flexible temporal expression profile modelling using the Gaussian process. Comput Stat Data Anal 51:1754–1764 CrossRefGoogle Scholar
  27. 27.
    Yuan M, Kendziorski C (2006) Hidden Markov model for microarray time course data in multiple biological conditions. J Am Stat Assoc 101:1323–1340 MathSciNetMATHCrossRefGoogle Scholar
  28. 28.
    Yuan M, Lin Y (2007) Model selection and estimation in the Gaussian graphical model. Biometrika 94:19–35 MathSciNetMATHCrossRefGoogle Scholar
  29. 29.
    Zeger SL, Liang KY (1992) An overview of methods for the analysis of longitudinal data. Stat Med 11:1825–1839 CrossRefGoogle Scholar
  30. 30.
    Zhang J (2005) Order-dependent thresholding with application to regression splines. In: Fan J, Li G (eds) Contemporary multivariate analysis and design of experiments, pp 397–425 Google Scholar
  31. 31.
    Zhu H, Tang Y, Ivanciu L, Centola M, Lupu C, Taylor FB, Lupu C (2007) Temporal dynamics of gene expression in the lung in a baboon model of E. coli sepsis. BMC Genomics 8:58 CrossRefGoogle Scholar

Copyright information

© International Chinese Statistical Association 2012

Authors and Affiliations

  • Hong-Bin Fang
    • 1
  • Dianliang Deng
    • 2
  • Guo-Liang Tian
    • 3
  • Lixin Shen
    • 4
  • Kangmin Duan
    • 5
  • Jiuzhou Song
    • 6
  1. 1.Division of Biostatistics, Greenebaum Cancer Center, and Department of Epidemiology and Public HealthUniversity of Maryland School of MedicineBaltimoreUSA
  2. 2.Department of Mathematics and StatisticsUniversity of ReginaSaskatchewanCanada
  3. 3.Department of Statistics and Actuarial ScienceThe University of Hong KongHong KongChina
  4. 4.Molecular Microbiology Laboratory, Ministry of Education Key Laboratory of Resource Biology and Biotechnology in Western ChinaNorthwest UniversityXi’anChina
  5. 5.Department of Microbiology and Infectious Diseases, Health Sciences CenterUniversity of CalgaryCalgaryCanada
  6. 6.Department of Animal and Avian SciencesUniversity of MarylandCollege ParkUSA

Personalised recommendations