Detection, Quantification, and Microbial Risk Assessment of Group A Rotavirus in Rivers from Uruguay

  • Viviana Bortagaray
  • Viviane Girardi
  • Sonia Pou
  • Andrés Lizasoain
  • Luis Fernando López Tort
  • Fernando R. Spilki
  • Rodney Colina
  • Matias VictoriaEmail author
Original Paper


The aim of this study was to detect, quantify, and assess the risk of infection and illness for Group A Rotavirus (RVA) in the watersheds of the Santa Lucia and Uruguay rivers in Uruguay. Monthly sampling was carried out for one year in six sites in the watershed of the Santa Lucía River and four in the Uruguay River. All the collection sites are used for recreational activities. Viral concentration was performed with the adsorption–elution method, and detection and quantification of RVA was carried out by TaqMan quantitative PCR (qPCR). Quantitative microbial risk assessment was applied to estimate the daily and annual risk of RVA infection, as well as the daily risk of illness considering direct exposure through recreational activity. RVA was detected in 42% (20/48) of the analyzed samples in the Uruguay River and 40% (29/72) in the Santa Lucía River. The virus was present in all the analyzed points in both watersheds. A pattern of seasonality, characterized by a higher detection frequency of the virus during coldest month of the year, was observed in both basins. The mean concentration for RVA was 1.3 × 105 genomic copies/L. The microbiological risk assessment shows that Santa Lucía watershed presented the highest daily risk of infection (6.41E–01) and illness (3.20E–01) estimated for the point downstream of Florida City; meanwhile for Uruguay River, the highest probabilities of infection (6.82E–01) and illness (3.41E–01) were estimated for the collection site for drinking water intake in Salto city. These results suggest that RVA contamination of these important rivers negatively impact on their microbiological quality since they are used for recreation and drinking water intake, demonstrating that the disposal of waste from cities located in their riverside confers a constant threat of infection for the general population, especially for children.


Group A rotavirus Fecal contamination Surface waters Microbial risk assessment 



We want to thank the “Comisión Sectorial de Investigación Científica”, Project I+D 2014 (ID 287), Universidad de la República, Uruguay, for the financial support.

Supplementary material

12560_2019_9416_MOESM1_ESM.docx (23 kb)
Supplementary file1 (DOCX 22 kb)


  1. Ansari, S. A., Springthorpe, V. S., & Sattar, S. A. (1991). Survival and vehicular spread of human rotaviruses: Possible relation to seasonality of outbreaks. Reviews of Infectious Diseases,13(3), 448–461.CrossRefGoogle Scholar
  2. Assis, A. S., Cruz, L. T., Ferreira, A. S., Bessa, M. E., de Oliveira Pinto, M. A., Vieira, C. B., et al. (2015). Relationship between viral detection and turbidity in a watershed contaminated with group A rotavirus. Environmental Science and Pollution Research,22(9), 6886–6897.CrossRefGoogle Scholar
  3. Aubriot, L., Delbene, L., Haakonsson, S., Somma, A., Hirsch, F., Bonilla, S. (2017). Evolución de la eutrofización en el Río Santa Lucía: influencia de la intensificación productiva y perspectivas. Innotec, (14).Google Scholar
  4. Barril, P. A., Fumian, T. M., Prez, V. E., Gil, P. I., Martínez, L. C., Giordano, M. O., et al. (2015). Rotavirus seasonality in urban sewage from Argentina: Effect of meteorological variables on the viral load and the genetic diversity. Environmental Research,138, 409–415. Scholar
  5. Bortagaray, V., Lizasoain, A., Piccini, C., Gillman, L., Berois, M., Pou, S., et al. (2019). Microbial source tracking analysis using viral indicators in Santa Lucía and Uruguay rivers, Uruguay. Food and Environmental Virology. CrossRefPubMedGoogle Scholar
  6. Braeye, T., Schrijver, D. E. K., Wollants, E., van Ranst, M., & Verhaegen, J. (2015). A large community outbreak of gastroenteritis associated with consumption of drinking water contaminated by river water, Belgium, 2010. Epidemiology and Infection,143(4), 711–719.CrossRefGoogle Scholar
  7. C.A.R.U. Comisión Administradora del Río Uruguay. (2018). El Río Uruguay en cifras. Retrieved January 15, 2018 from
  8. Carlton, E. J., Woster, A. P., DeWitt, P., Goldstein, R. S., & Levy, K. (2016). A systematic review and meta-analysis of ambient temperature and diarrhoeal diseases. International Journal of Epidemiology,45, 117–130.CrossRefGoogle Scholar
  9. Chigor, V. N., Sibanda, T., & Okoh, A. I. (2014). Assessment of the risks for human health of adenoviruses, hepatitis A virus, rotaviruses and enteroviruses in the Buffalo River and three source water dams in the Eastern Cape. Food and Environmental Virology,6, 87–98.CrossRefGoogle Scholar
  10. Cook, S. M., Glass, R. I., LeBaron, C. W., et al. (1990). Global seasonality of rotavirus infections. Bulletin of the World Health Organization,68(2), 171–177.PubMedPubMedCentralGoogle Scholar
  11. De La Cruz Hernández, S. I., Anaya Molina, Y., Gómez Santiago, F., Terán Vega, H. L., Monroy Leyva, E., Méndez Pérez, H., et al. (2018). Real-time RT-PCR, a necessary tool to support the diagnosis and surveillance of rotavirus in Mexico. Diagnostic Microbiology and Infectious Disease,90(4), 272–276. Scholar
  12. Divizia, M., Gabrieli, R., Donia, D., Macaluso, A., Bosch, A., Guix, S., et al. (2004). Waterborne gastroenteritis outbreak in Albania. Water Science and Technology,50(1), 57–61.CrossRefGoogle Scholar
  13. Elmahdy, M. E., Fongaro, G., Magri, M. E., Petruccio, M. M., & Barardi, C. R. (2016). Spatial distribution of enteric viruses and somatic coliphages in a Lagoon used as drinking water source and recreation in Southern Brazil. International Journal of Hygiene and Environmental Health, 219(7 Pt A), 617–625.CrossRefGoogle Scholar
  14. Espinosa, A. C., Mazari-Hiriart, M., Espinosa, R., Maruri-Avidal, L., Méndez, E., & Arias, C. F. (2008). Infectivity and genome persistence of rotavirus and astrovirus in groundwater and surface water. Water Research,42(10–11), 2618–2628. Scholar
  15. Estes, M. K., & Greenberg, H. B. (2013). Rotaviruses. In D. M., Knipe, P. M., Howley, J. I., Cohen, D. E., Griffin, R. A., Lamb, M. A., Martin, et al. (Eds.), Fields virology (6th ed.). Philadelphia: Lippincott Williams and Wilkins.Google Scholar
  16. Fewtrell, L., & Kay, D. (2015). Recreational water and infection: A review of recent findings. Current Environmental Health Reports,2, 85–94.CrossRefGoogle Scholar
  17. Fong, T. T., & Lipp, E. K. (2005). Enteric viruses of humans and animals in aquatic environments: Health risks, detection, and potential water quality assessment tools. Microbiology and Molecular Biology Reviews,69(2), 357–371.CrossRefGoogle Scholar
  18. Fongaro, G., Nascimento, M. A., Viancelli, A., Tonetta, D., Petrucio, M. M., & Barardi, C. R. (2012). Surveillance of human viral contamination and physicochemical profiles in a surface water lagoon. Water Science and Technology,66(12), 2682–2687. Scholar
  19. Fongaro, G., Padilha, J., Schissi, C. D., Nascimento, M. A., Bampi, G. B., Viancelli, A., et al. (2015). Human and animal enteric virus in groundwater from deep wells, and recreational and network water. Environmental Science and Pollution Research,22, 20060–20066.CrossRefGoogle Scholar
  20. Fumian, T. M., Leite, J. P. P., Rose, T. L., Prado, T., & Miagostovich, M. P. (2011). One year environmental surveillance of rotavirus species A (RVA) genotypes in circulation after the introduction of the Rotarix vaccine in Rio de Janeiro, Brazil. Water Research,45, 5755–5763.CrossRefGoogle Scholar
  21. Gerba, C. P. (2019). Risk assessment. In M. L. Brusseau, I. L. Pepper, & C. Gerba (Eds.), Environmental and pollution science (3rd ed., pp. 541–563). Amsterdam: Academic Press.CrossRefGoogle Scholar
  22. Gerba, C. P., Rose, J. B., Haas, C. N., et al. (1996). Waterborne rotavirus: A risk assessment. Water Research,12, 2929–2940.CrossRefGoogle Scholar
  23. Haas, C. N., Rose, J. B., Gerba, C., et al. (1993). Risk assessment of virus in drinking water. Risk Analysis,13(5), 545–552.CrossRefGoogle Scholar
  24. Haas, C. N., Rose, J. B., & Gerba, C. P. (1999). Quantitative microbial risk assessment. New York: Wiley.Google Scholar
  25. Haramoto, E., Katayama, H., Utagawa, E., & Ohgaki, S. (2009). Recovery of human norovirus from water by virus concentration methods. Journal of Virological Methods,160(1–2), 206–209. Scholar
  26. Katayama, H., Shimasaki, A., & Ohgaki, S. (2002). Development of a virus concentration method and its application to detection of enterovirus and norwalk virus from coastal seawater. Applied and Environmental Microbiology,68(3), 1033–1039.CrossRefGoogle Scholar
  27. Kiulia, N. M., Hofstra, N., Vermeulen, L. C., Obara, M. A., Medema, G., & Rose, J. B. (2015). Global occurrence and emission of rotaviruses to surface waters. Pathogens,4(2), 229–255. Scholar
  28. Koroglu, M., Yakupogullari, Y., Otlu, B., Ozturk, S., Ozden, M., Ozer, A., et al. (2011). A waterborne outbreak of epidemic diarrhea due to group A rotavirus in Malatya, Turkey. New Microbiologica,34(1), 17–24.PubMedGoogle Scholar
  29. Kotloff, K. L., Nataro, J. P., Blackwelder, W. C., Nasrin, D., Farag, T. H., Panchalingam, S., et al. (2013). Burden and aetiology of diarrhoeal disease in infants and young children in developing countries (the Global Enteric Multicenter Study, GEMS): A prospective, case-control study. Lancet,382(9888), 209–222.CrossRefGoogle Scholar
  30. Kraay, A. N. M., Brouwer, A. F., Lin, N., Collender, P. A., Remais, J. V., & Eisenberg, J. N. S. (2018). Modeling environmentally mediated rotavirus transmission: The role of temperature and hydrologic factors. Proceedings of the National Academy of Sciences of the United States of America,115(12), E2782–E2790.CrossRefGoogle Scholar
  31. Levy, K., Hubbard, A. E., & Eisenberg, J. N. (2009). Seasonality of rotavirus disease in the tropics: A systematic review and meta-analysis. International Journal of Epidemiology,38(6), 1487–1496. Scholar
  32. Martinelli D, Prato R, Chironna M, Sallustio A, Caputi G, Conversano M et al (2007) Large outbreak of viral gastroenteritis caused by contaminated drinking water in Apulia, Italy, May–October 2006. Euro Surveillance, 12(4):E070419.1.Google Scholar
  33. Masachessi, G., Pisano, M. B., Prez, V. E., Martínez, L. C., Michelena, J. F., Martínez-Wassaf, M., et al. (2018). Enteric viruses in surface waters from Argentina: Molecular and viable-virus detection. Applied and Environmental Microbiology. CrossRefPubMedPubMedCentralGoogle Scholar
  34. Mellou, K., Katsioulis, A., Potamiti-Komi, M., Pournaras, S., Kyritsi, M., Katsiaflaka, A., et al. (2014). A large waterborne gastroenteritis outbreak in central Greece, March 2012: Challenges for the investigation and management. Epidemiology and Infection,142(1), 40–50.CrossRefGoogle Scholar
  35. Miagostovich, M. P., Ferreira, F. F., Guimarães, F. R., Fumian, T. M., Diniz-Mendes, L., Luz, S. L., et al. (2008). Molecular detection and characterization of gastroenteritis viruses occurring naturally in the stream waters of Manaus, central Amazonia, Brazil. Applied and Environmental Microbiology,74(2), 375–382.CrossRefGoogle Scholar
  36. Ming, H. X., Zhu, L., Feng, J. F., Yang, G., & Fan, J. F. (2014). Risk assessment of rotavirus infection in surface seawater from Bohai Bay, China. Human and Ecological Risk Assessment,20, 929–940.CrossRefGoogle Scholar
  37. Miura, T., Gima, A., & Akiba, M. (2019). Detection of norovirus and rotavirus present in suspended and dissolved forms in drinking water sources. Food and Environmental Virology,11(1), 9–19.CrossRefGoogle Scholar
  38. MSP. (2018). Vacunas. Retrieved November 24, 2018 from
  39. Pang, X., Qiu, Y., Gao, T., Zurawell, R., Neumann, N. F., Craik, S., et al. (2019). Prevalence, levels and seasonal variations of human enteric viruses in six major rivers in Alberta, Canada. Water Research,153, 349–356.CrossRefGoogle Scholar
  40. Platts-Mills, J. A., Babji, S., Bodhidatta, L., Gratz, J., Haque, R., Havt, A., et al. (2015). MAL-ED Network Investigators. Pathogen-specific burdens of community diarrhoea in developing countries: A multisite birth cohort study (MAL-ED). The Lancet Global Health, 3(9), e564–e575.CrossRefGoogle Scholar
  41. Prez, V. E., Gil, P. I., Temprana, C. F., et al. (2015). Quantification of human infection risk caused by rotavirus in surface waters from Córdoba, Argentina. Science of the Total Environment,538, 220–229.CrossRefGoogle Scholar
  42. Reynolds, K. A. (2004). Integrated cell culture/PCR for detection of enteric viruses in environmental samples. In J. F. T. Spencer & A. R. Spencer (Eds.), Public health microbiology (pp. 69–78). Totowa: Humana Press.CrossRefGoogle Scholar
  43. Rigotto, C., Victoria, M., Moresco, V., et al. (2010). Assessment of adenovirus, hepatitis A virus and rotavirus presence in environmental samples in Florianopolis, South Brazil. Journal of Applied Microbiology,109, 1979–1987.CrossRefGoogle Scholar
  44. Rutjes, S. A., Lodder, W. J., Docters van Leeuwen, A., & Roda Husman, A. M. (2009). Detection of infectious rotavirus in naturally contaminated source waters for drinking water production. Journal of Applied Microbiology,107, 97–105.CrossRefGoogle Scholar
  45. Sinclair, R. G., Jones, E. L., & Gerba, C. P. (2009). Viruses in recreational water-borne disease outbreaks: A review. Journal of Applied Microbiology,107(6), 1769–1780.CrossRefGoogle Scholar
  46. Staggemeier, R., Heck, T. M. S., Demoliner, M., Ritzel, R. G. F., Röhnelt, N. M. S., Girardi, V., et al. (2017). Venker CA, Spilki FR. Enteric viruses and adenovirus diversity in waters from 2016 Olympic venues. Science of the Total Environment,586, 304–312.CrossRefGoogle Scholar
  47. Tort, L. F., Victoria, M., Lizasoain, A., García, M., Berois, M., Cristina, J., et al. (2015a). Detection of common, emerging and uncommon VP4, and VP7 human Group A Rotavirus genotypes from urban sewage samples in Uruguay. Food and Environmental Virology,7(4), 342–353. Scholar
  48. Tort, L. F., Victoria, M., Lizasoain, A. A., Castells, M., Maya, L., Gómez, M. M., et al. (2015b). Molecular epidemiology of group A rotavirus among children admitted to hospital in Salto, Uruguay, 2011–2012: First detection of the emerging genotype G12. Journal of Medical Virology,87(5), 754–763.CrossRefGoogle Scholar
  49. Victoria, M., Fumian, T. M., Rocha, M. S., Dalmao, F., Leite, J. P., Girones, R., et al. (2014). Gastroenteric virus dissemination and influence of rainfall events in urban beaches in Brazil. Journal of Applied Microbiology,117(4), 1210–1218.CrossRefGoogle Scholar
  50. Vieira, C. B. (2015). Rastreamento microbiológico de fontes de contaminação humana e animal por marcadores virais e avaliação de risco de infecções por vírus gastroentéricos na bacia do Rio Negro, Manaus, Amazonas. PhD Thesis.Google Scholar
  51. Vieira, C. B., deAbreu, C. A., de Jesus, M. S., Luz, S. L., Wyn-Jones, P., Kay, D., et al. (2016). Viruses surveillance under different season scenarios of the Negro River Basin, Amazonia, Brazil. Food and Environmental Virology,8, 57–69.CrossRefGoogle Scholar
  52. Ward, R. L., Bernstein, D. I., Young, E. C., et al. (1986). Human rotavirus studies in volunteers: Determination of infectious dose and serological response to infection. The Journal of Infectious Diseases,154(5), 871–880.CrossRefGoogle Scholar
  53. Zeng, S. Q., Halkosalo, A., Salminen, M., et al. (2008). One-step quantitative RT-PCR for the detection of rotavirus in acute gastroenteritis. Journal of Virological Methods,153(2), 238–240.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Laboratory of Molecular VirologyCENUR Litoral Norte, Sede Salto, Universidad de la RepúblicaSaltoUruguay
  2. 2.Laboratório de Saúde ÚnicaUniversidade FeevaleNovo HamburgoBrazil
  3. 3.Institute of Research in Health Sciences (INICSA), Faculty of Medical Sciences, CONICET and Biostatistics Unit, School of Nutrition, Faculty of Medical SciencesNational University of CórdobaCórdobaArgentina

Personalised recommendations