Advertisement

Accumulation and Depuration Kinetics of Rotavirus in Mussels Experimentally Contaminated

  • Maria Grazia AmorosoEmail author
  • Antonio Luca Langellotti
  • Valeria Russo
  • Anna Martello
  • Marina Monini
  • Ilaria Di Bartolo
  • Giovanni Ianiro
  • Denise Di Concilio
  • Giorgio Galiero
  • Giovanna FuscoEmail author
Original Paper

Abstract

Bivalve mollusks as filter-feeders concentrate in their digestive tissue microorganisms likely present in the harvesting water, thus becoming risky food especially if consumed raw or poorly cooked. To eliminate bacteria and viruses eventually accumulated, they must undergo a depuration process which efficacy on viruses is on debate. To better clarify the worth of the depuration process on virus elimination from mussels, in this study we investigated rotavirus kinetics of accumulation and depuration in Mytilus galloprovincialis experimentally contaminated. Depuration process was monitored for 9 days and virus residual presence and infectivity were evaluated by real time quantitative polymerase chain reaction, cell culture and electron microscopy at days 1, 2, 3, 5, 7, 9 of depuration. Variables like presence of ozone and of microalgae feeding were also analyzed as possible depuration enhancers. Results showed a two-phase virus removal kinetic with a high decrease in the first 24 h of depuration and 5 days necessary to completely remove rotavirus.

Keywords

Rotavirus Bioaccumulation Depuration Mussels 

Notes

Acknowledgements

We would like to thank Dr. Roberta Pellicanò for statistical analysis.

Funding

This work was supported by Grant RC015/IZSME from Italian Ministry of Health.

Compliance with Ethical Standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. Amoroso, M. G., Salzano, C., Cioffi, B., Napoletano, M., Garofalo, F., Guarino, A., & Fusco, G. (2011). Validation of a real-time PCR assay for fast and sensitive quantification of Brucella spp. in water buffalo milk. Food Control, 22(8), 1466–1470,CrossRefGoogle Scholar
  2. Araud, E., Di Caprio, E., Yang, Z., Li, X., Lou, F., Hughes, J. H., et al. (2015). High-pressure inactivation of rotaviruses: Role of treatment temperature and strain diversity in virus inactivation. Applied and Environmental Microbiology, 81(19), 6669–6678.  https://doi.org/10.1128/AEM.01853-15.CrossRefPubMedPubMedCentralGoogle Scholar
  3. Araud, E., DiCaprio, E., Ma, Y., Lou, F., Gao, Y., Kingsley, D., et al. (2016). Thermal inactivation of enteric viruses and bioaccumulation of enteric foodborne viruses in live oysters (Crassostrea virginica). Applied and Environmental Microbiology, 82(7), 2086–2099.  https://doi.org/10.1128/AEM.03573-15.CrossRefPubMedPubMedCentralGoogle Scholar
  4. Bongiorno, T., Iacumin, L., Tubaro, F., Marcuzzo, E., Sensidoni, A., & Tulli, F. (2015). Seasonal changes in technological and nutritional quality of Mytilus galloprovincialis from suspended culture in the Gulf of Trieste (North Adriatic Sea). Food Chemistry, 173, 355–362.  https://doi.org/10.1016/j.foodchem.2014.10.029.CrossRefPubMedGoogle Scholar
  5. Boxman, I. L., Verhoef, L., Vennema, H., Ngui, S. L., Friesema, I. H., Whiteside, C., et al. (2016). International linkage of two food-borne hepatitis A clusters through traceback of mussels, The Netherlands, 2012. Euro Surveillance: Bulletin Europeen Sur Les Maladies Transmissibles = European Communicable Disease Bulletin, 21(3), 30113.  https://doi.org/10.2807/1560-7917.ES.2016.21.3.30113.CrossRefGoogle Scholar
  6. Butt, A. A., Aldridge, K. E., & Sanders, C. V. (2004). Infections related to the ingestion of seafood. Part I: Viral and bacterial infections. The Lancet: Infectious Diseases, 4(4), 201–212.  https://doi.org/10.1016/S1473-3099(04)00969-7.CrossRefGoogle Scholar
  7. Cho, H. G., Lee, S. G., Lee, M. Y., Hur, E. S., Lee, J. S., Park, P. H., et al. (2016). An outbreak of norovirus infection associated with fermented oyster consumption in South Korea. Epidemiology and Infection, 144(13), 2759–2764.  https://doi.org/10.1017/S0950268816000170.CrossRefPubMedGoogle Scholar
  8. Costafreda, M. I., Bosch, A., & Pinto, R. M. (2006). Development, evaluation, and standardization of a real-time TaqMan reverse transcription-PCR assay for quantification of hepatitis A virus in clinical and shellfish samples. Applied and Environmental Microbiology, 72(6), 3846–3855.CrossRefGoogle Scholar
  9. Croci, L., Ciccozzi, M., De Medici, D., Di Pasquale, S., Fiore, A., Mele, A., et al. (1999). Inactivation of hepatitis A virus in heat-treated mussels. Journal of Applied Microbiology, 87(6), 884–888.CrossRefGoogle Scholar
  10. De Medici, D., Ciccozzi, M., Fiore, A., Di Pasquale, S., Parlato, A., Ricci-Bitti, P., et al. (2001). Closed-circuit system for the depuration of mussels experimentally contaminated with hepatitis A virus. Journal of Food Protection, 64(6), 877–880.  https://doi.org/10.4315/0362-028x-64.6.877.CrossRefPubMedGoogle Scholar
  11. Fusco, G., Di Bartolo, I., Cioffi, B., Ianiro, G., Palermo, P., Monini, M., et al. (2017). Prevalence of foodborne viruses in mussels in southern Italy. Food and Environmental Virology, 9(2), 187–194.  https://doi.org/10.1007/s12560-016-9277-x.CrossRefPubMedGoogle Scholar
  12. Gentry, J., Vinje, J., & Lipp, E. K. (2009). A rapid and efficient method for quantitation of genogroups I and II norovirus from oysters and application in other complex environmental samples. Journal of Virological Methods, 156(1–2), 59–65.  https://doi.org/10.1016/j.jviromet.2008.11.001.CrossRefPubMedGoogle Scholar
  13. Hu, L., Crawford, S. E., Czako, R., Cortes-Penfield, N. W., Smith, D. F., Le Pendu, J., et al. (2012). Cell attachment protein VP8* of a human rotavirus specifically interacts with A-type histo-blood group antigen. Nature, 485(7397), 256–259.  https://doi.org/10.1038/nature10996.CrossRefPubMedPubMedCentralGoogle Scholar
  14. Huang, P., Xia, M., Tan, M., Zhong, W., Wei, C., Wang, L., et al. (2012). Spike protein VP8* of human rotavirus recognizes histo-blood group antigens in a type-specific manner. Journal of Virology, 86(9), 4833–4843.  https://doi.org/10.1128/JVI.05507-11.CrossRefPubMedPubMedCentralGoogle Scholar
  15. Ianiro, G., Delogu, R., Bonomo, P., Fiore, L., Ruggeri, F. M., & RotaNet-Italy Study Group. (2014). Molecular analysis of group A rotaviruses detected in adults and adolescents with severe acute gastroenteritis in Italy in 2012. Journal of Medical Virology, 86(6), 1073–1082.  https://doi.org/10.1002/jmv.23871.CrossRefPubMedGoogle Scholar
  16. Keller, R., Justino, J. F., & Cassini, S. T. (2013). Assessment of water and seafood microbiology quality in a mangrove region in Vitoria. Brazil. Journal of Water and Health, 11(3), 573–580.  https://doi.org/10.2166/wh.2013.245.CrossRefPubMedGoogle Scholar
  17. Le Guyader, F. S., Le Saux, J. C., Ambert-Balay, K., Krol, J., Serais, O., Parnaudeau, S., et al. (2008). Aichi virus, norovirus, astrovirus, enterovirus, and rotavirus involved in clinical cases from a French oyster-related gastroenteritis outbreak. Journal of Clinical Microbiology, 46(12), 4011–4017.  https://doi.org/10.1128/JCM.01044-08.CrossRefPubMedPubMedCentralGoogle Scholar
  18. Le Guyader, F. S., Atmar, R. L., & Le Pendu, J. (2012). Transmission of viruses through shellfish: When specific ligands come into play. Current Opinion in Virology, 2(1), 103–110.  https://doi.org/10.1016/j.coviro.2011.10.029.CrossRefPubMedGoogle Scholar
  19. Lodder, W. J., & de Roda Husman, A. M. (2005). Presence of noroviruses and other enteric viruses in sewage and surface waters in The Netherlands. Applied and Environmental Microbiology, 71(3), 1453–1461.CrossRefGoogle Scholar
  20. Love, D. C., Lovelace, G. L., & Sobsey, M. D. (2010). Removal of Escherichia coli, Enterococcus fecalis, coliphage MS2, poliovirus, and hepatitis A virus from oysters (Crassostrea virginica) and hard shell clams (Mercinaria mercinaria) by depuration. International Journal of Food Microbiology, 143(3), 211–217.  https://doi.org/10.1016/j.ijfoodmicro.2010.08.028.CrossRefPubMedGoogle Scholar
  21. Lunestad, B. T., Maage, A., Roiha, I. S., Myrmel, M., Svanevik, C. S., & Duinker, A. (2016). An outbreak of norovirus infection from shellfish soup due to unforeseen insufficient heating during preparation. Food and Environmental Virology, 8(4), 231–234.  https://doi.org/10.1007/s12560-016-9245-5.CrossRefPubMedGoogle Scholar
  22. Maalouf, H., Zakhour, M., Le Pendu, J., Le Saux, J. C., Atmar, R. L., & Le Guyader, F. S. (2010). Distribution in tissue and seasonal variation of norovirus genogroup I and II ligands in oysters. Applied and Environmental Microbiology, 76(16), 5621–5630.  https://doi.org/10.1128/AEM.00148-10.CrossRefPubMedPubMedCentralGoogle Scholar
  23. Mattison, K., Harlow, J., Morton, V., Cook, A., Pollari, F., Bidawid, S., et al. (2010). Enteric viruses in ready-to-eat packaged leafy greens. Emerging Infectious Diseases, 16(11), 1815–1817, discussion 1817.  https://doi.org/10.3201/eid1611.100877.CrossRefPubMedPubMedCentralGoogle Scholar
  24. McLeod, C., Hay, B., Grant, C., Greening, G., & Day, D. (2009). Inactivation and elimination of human enteric viruses by Pacific oysters. Journal of Applied Microbiology, 107(6), 1809–1818.  https://doi.org/10.1111/j.1365-2672.2009.04373.x.CrossRefPubMedGoogle Scholar
  25. McLeod, C., Polo, D., Le Saux, J. C., & Le Guyader, F. S. (2017). Depuration and relaying: A review on potential removal of Norovirus from oysters. Comprehensive Reviews in Food Science and Food Safety, 16, 692–706.CrossRefGoogle Scholar
  26. Mezzanotte, V., Marazzi, F., Bissa, M., Pacchioni, S., Binelli, A., Parolini, M., et al. (2016). Removal of enteric viruses and Escherichia coli from municipal treated effluent by zebra mussels. The Science of the Total Environment, 539, 395–400.CrossRefGoogle Scholar
  27. Nappier, S. P., Graczyk, T. K., & Schwab, K. J. (2008). Bioaccumulation, retention, and depuration of enteric viruses by Crassostrea virginica and Crassostrea ariakensis oysters. Applied and Environmental Microbiology, 74(22), 6825–6831.  https://doi.org/10.1128/AEM.01000-08.CrossRefPubMedPubMedCentralGoogle Scholar
  28. Oliveira, A. R., Sykes, A. V., Hachero-Cruzado, I., Azeiteiro, U. M., & Esteves, E. (2015). A sensory and nutritional comparison of mussels (Mytilus sp.) produced in NW Iberia and in the Armona Offshore Production Area (Algarve, Portugal). Food Chemistry, 168, 520–528.  https://doi.org/10.1016/j.foodchem.2014.07.082.CrossRefPubMedGoogle Scholar
  29. Parada-Fabian, J. C., Juarez-Garcia, P., Natividad-Bonifacio, I., Vazquez-Salinas, C., & Quinones-Ramirez, E. I. (2016). Identification of enteric viruses in foods from Mexico City. Food and Environmental Virology, 8(3), 215–220.  https://doi.org/10.1007/s12560-016-9244-6.CrossRefPubMedGoogle Scholar
  30. Park, H., Jung, S., Shin, H., Ha, S. D., Park, T. J., Park, J. P., et al. (2019). Localization and persistence of hepatitis A virus in artificially contaminated oysters. International Journal of Food Microbiology, 299, 58–63.CrossRefGoogle Scholar
  31. Polo, D., Alvarez, C., Longa, A., & Romalde, J. L. (2014a). Effectiveness of depuration for hepatitis A virus removal from mussels (Mytilus galloprovincialis). International Journal of Food Microbiology, 180, 24–29.  https://doi.org/10.1016/j.ijfoodmicro.2014.04.001.CrossRefPubMedGoogle Scholar
  32. Polo, D., Avarez, C., Vilarino, M. L., Longa, A., & Romalde, J. L. (2014b). Depuration kinetics of hepatitis A virus in clams. Food Microbiology, 39, 103–107.  https://doi.org/10.1016/j.fm.2013.11.011.CrossRefPubMedGoogle Scholar
  33. Polo, D., Feal, X., Varela, M. F., Monteagudo, A., & Romalde, J. L. (2014c). Depuration kinetics of murine norovirus in shellfish. Food Research International (Ottawa, Ontario), 64, 182–187.CrossRefGoogle Scholar
  34. Polo, D., Feal, X., & Romalde, J. L. (2015a). Mathematical model for viral depuration kinetics in shellfish: An useful tool to estimate the risk for the consumers. Food Microbiology, 49, 220–225.  https://doi.org/10.1016/j.fm.2015.02.015.CrossRefPubMedGoogle Scholar
  35. Polo, D., Varela, M. F., & Romalde, J. L. (2015b). Detection and quantification of hepatitis A virus and norovirus in Spanish authorized shellfish harvesting areas. International Journal of Food Microbiology, 193, 43–50.  https://doi.org/10.1016/j.ijfoodmicro.2014.10.007.CrossRefPubMedGoogle Scholar
  36. Powell, A., & Scolding, J. W. (2018). Direct application of ozone in aquaculture systems. Reviews in Aquaculture, 10(2), 424–438.CrossRefGoogle Scholar
  37. Prevost, B., Lucas, F. S., Goncalves, A., Richard, F., Moulin, L., & Wurtzer, S. (2015). Large scale survey of enteric viruses in river and waste water underlines the health status of the local population. Environment International, 79, 42–50.  https://doi.org/10.1016/j.envint.2015.03.004.CrossRefPubMedGoogle Scholar
  38. Purpari, G., Macaluso, G., Di Bella, S., Gucciardi, F., Mira, F., Di Marco, P., et al. (2019). Molecular characterization of human enteric viruses in food, water samples, and surface swabs in Sicily. International Journal of Infectious Diseases: Official Publication of the International Society for Infectious Diseases, 80, 66–72.CrossRefGoogle Scholar
  39. Quiroz-Santiago, C., Vazquez-Salinas, C., Natividad-Bonifacio, I., Barron-Romero, B. L., & Quinones-Ramirez, E. I. (2014). Rotavirus G2P[4] detection in fresh vegetables and oysters in Mexico City. Journal of Food Protection, 77(11), 1953–1959.  https://doi.org/10.4315/0362-028X.JFP-13-426.CrossRefPubMedGoogle Scholar
  40. Ramani, S., & Giri, S. (2019). Influence of histo blood group antigen expression on susceptibility to enteric viruses and vaccines. Current Opinion in Infectious Diseases.  https://doi.org/10.1097/QCO.0000000000000571.CrossRefPubMedGoogle Scholar
  41. Raposo, M. F., de Morais, R. M., & Bernardo de Morais, A. M. (2013). Bioactivity and applications of sulphated polysaccharides from marine microalgae. Marine Drugs, 11(1), 233–252.  https://doi.org/10.3390/md11010233.CrossRefPubMedGoogle Scholar
  42. Richards, G. P., McLeod, C., & Le Guyader, F. S. (2010). Processing strategies to inactivate viruses in shellfish. Food and Environmental Virology, 2, 183–193.CrossRefGoogle Scholar
  43. Romalde, J. L., Rivadulla, E., Varela, M. F., & Barja, J. L. (2018). An overview of 20 years of studies on the prevalence of human enteric viruses in shellfish from Galicia, Spain. Journal of Applied Microbiology, 124(4), 943–957.  https://doi.org/10.1111/jam.13614.CrossRefPubMedGoogle Scholar
  44. Ruggeri, F. M., & Greenberg, H. B. (1991). Antibodies to the trypsin cleavage peptide VP8 neutralize rotavirus by inhibiting binding of virions to target cells in culture. Journal of Virology, 65(5), 2211–2219.PubMedPubMedCentralGoogle Scholar
  45. Souza, D. S., Piazza, R. S., Pilotto, M. R., do Nascimento Mde, A., Moresco, V., Taniguchi, S., & Barardi, C. R. (2013). Virus, protozoa and organic compounds decay in depurated oysters. International Journal of Food Microbiology, 167(3), 337–345.  https://doi.org/10.1016/j.ijfoodmicro.2013.09.019.CrossRefPubMedGoogle Scholar
  46. Souza, D. S. M., Dominot, A. F. A., Moresco, V., & Barardi, C. R. M. (2018). Presence of enteric viruses, bioaccumulation and stability in Anomalocardia brasiliana clams (Gmelin, 1791). International Journal of Food Microbiology, 266, 363–371.CrossRefGoogle Scholar
  47. Tate, J. E., Patel, M. M., Cortese, M. M., Payne, D. C., Lopman, B. A., Yen, C., et al. (2016). Use of patients with diarrhea who test negative for rotavirus as controls to estimate rotavirus vaccine effectiveness through case–control studies. Clinical Infectious Diseases: An Official Publication of the Infectious Diseases Society of America, 62(Suppl 2), S106–S114.  https://doi.org/10.1093/cid/civ1014.CrossRefGoogle Scholar
  48. Ueki, Y., Shoji, M., Suto, A., Tanabe, T., Okimura, Y., Kikuchi, Y., et al. (2007). Persistence of caliciviruses in artificially contaminated oysters during depuration. Applied and Environmental Microbiology, 73(17), 5698–5701.CrossRefGoogle Scholar
  49. Van Trang, N., Vu, H. T., Le, N. T., Huang, P., Jiang, X., & Anh, D. D. (2014). Association between norovirus and rotavirus infection and histo-blood group antigen types in Vietnamese children. Journal of Clinical Microbiology, 52(5), 1366–1374.  https://doi.org/10.1128/JCM.02927-13.CrossRefPubMedPubMedCentralGoogle Scholar
  50. Yanuhar, U., Nurdiani, R., & Hertika, A. M. S. (2011). Potency of Nannochloropsis oculata as antibacterial, antioxidant and antiviral on humpback grouper infected by Vibrio alginolyticus and viral nervous necrotic. Journal of Food Science and Engineering, 1(5), 323–330.Google Scholar
  51. Zeng, S. Q., Halkosalo, A., Salminen, M., Szakal, E. D., Puustinen, L., & Vesikari, T. (2008). One-step quantitative RT-PCR for the detection of rotavirus in acute gastroenteritis. Journal of Virological Methods, 153(2), 238–240.  https://doi.org/10.1016/j.jviromet.2008.08.004.CrossRefPubMedGoogle Scholar
  52. Zhang, X. F., Long, Y., Tan, M., Zhang, T., Huang, Q., Jiang, X., et al. (2016). P[8] and P[4] rotavirus infection associated with secretor phenotypes among children in south China. Scientific Reports, 6, 34591.  https://doi.org/10.1038/srep34591.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Animal HealthExperimental Zooprophylactic Institute of Southern ItalyPorticiItaly
  2. 2.Aquaculture Division, CAISIAL CenterUniversity of Naples Federico IIPorticiItaly
  3. 3.Department of Veterinary Medicine and Animal ProductionUniversity of Naples Federico IINaplesItaly
  4. 4.Istituto Superiore Di Sanità Department of Food Safety, Nutrition and Veterinary Public HealthRomeItaly

Personalised recommendations