Advertisement

Bacteriophages Against Pathogenic Vibrios in Delaware Bay Oysters (Crassostrea virginica) During a Period of High Levels of Pathogenic Vibrio parahaemolyticus

  • Gary P. RichardsEmail author
  • Lathadevi K. Chintapenta
  • Michael A. Watson
  • Amanda G. Abbott
  • Gulnihal Ozbay
  • Joseph Uknalis
  • Abolade A. Oyelade
  • Salina Parveen
Original Paper

Abstract

Eastern oysters (Crassostrea virginica) from three locations along the Delaware Bay were surveyed monthly from May to October 2017 for levels of total Vibrio parahaemolyticus, pathogenic strains of V. parahaemolyticus and Vibrio vulnificus, and for strain-specific bacteriophages against vibrios (vibriophages). The objectives were to determine (a) whether vibriophages against known strains or serotypes of clinical and environmental vibrios were detectable in oysters from the Delaware Bay and (b) whether vibriophage presence or absence corresponded with Vibrio abundances in oysters. Host cells for phage assays included pathogenic V. parahaemolyticus serotypes O3:K6, O1:KUT (untypable) and O1:K1, as well as clinical and environmental strains of V. vulnificus. Vibriophages against some, but not all, pathogenic V. parahaemolyticus serotypes were readily detected in Delaware Bay oysters. In July, abundances of total and pathogenic V. parahaemolyticus at one site spiked to levels exceeding regulatory guidelines. Phages against three V. parahaemolyticus host serotypes were detected in these same oysters, but also in oysters with low V. parahaemolyticus levels. Serotype-specific vibriophage presence or absence did not correspond with abundances of total or pathogenic V. parahaemolyticus. Vibriophages were not detected against three V. vulnificus host strains, even though V. vulnificus were readily detectable in oyster tissues. Selected phage isolates against V. parahaemolyticus showed high host specificity. Transmission electron micrographs revealed that most isolates were ~ 60-nm diameter, non-tailed phages. In conclusion, vibriophages were detected against pandemic V. parahaemolyticus O3:K6 and O1:KUT, suggesting that phage monitoring in specific host cells may be a useful technique to assess public health risks from oyster consumption.

Keywords

Bacteriophage Oysters Crassostrea virginica Vibrio parahaemolyticus Vibrio vulnificus 

Notes

Acknowledgements

We thank Esam Almuhaideb, Department of Agriculture, Food and Resource Sciences, University of Maryland Eastern Shore, Princess Anne, MD, for confirmatory analysis of selected data. We also thank Devin Mendez, College of Agriculture, Science and Technology, Delaware State University, Dover, DE, for graphing assistance. Support for this project was provided by a USDA Capacity Building Grant Award no. 2014-38821-22430 (SP) and by USDA, ARS intramural funds under CRIS 8072-42000-081-00D (GPR).

References

  1. Adams, M. H. (1959). Bacteriophages. New York: Interscience Publishers, Inc.Google Scholar
  2. Audemard, C., Kator, H. I., & Reece, K. S. (2018). High salinity relay as a post-harvest processing method for reducing Vibrio vulnificus levels in oysters (Crassostrea virginica). International Journal of Food Microbiology, 279, 70–79.CrossRefGoogle Scholar
  3. Baker-Austin, C., Gore, A., Oliver, J. D., Rangdale, R., McArthur, J. V., & Lees, D. N. (2010). Rapid in situ detection of virulent Vibrio vulnificus strains in raw oyster matrices using real-time PCR. Environmental Microbiology Reports, 2, 76–80.CrossRefGoogle Scholar
  4. Baross, J. A., Liston, J., & Morita, R. Y. (1978). Incidence of Vibrio parahaemolyticus bacteriophages and other Vibrio bacteriophages in marine samples. Applied and Environmental Microbiology, 36, 492–499.Google Scholar
  5. Blodgett, R. (2010). BAM Appendix 2: Most probable number from serial dilutions. U.S. Food and Drug Administration. Washington, DC: Public Health Service, U.S. Department of Health and Human Services.Google Scholar
  6. Centers for Disease Control and Prevention. (1999). Outbreak of Vibrio parahaemolyticus infection associated with eating raw oysters and clams harvested from Long Island Sound—Connecticut, New Jersey, and New York, 1998. Morbidity Mortality Weekly Reports. 48, 48–51.Google Scholar
  7. Centers for Disease Control and Prevention. (2010). Preliminary FoodNed data on the incidence of infection with pathogens transmitted commonly through food—10 states, 2009. Morbidity Mortality Weekly Reports, 59, 418–422.Google Scholar
  8. Centers for Disease Control and Prevention. (2016). National enteric disease surveillance: COVIS annual summary, 2014. Summary of human Vibrio cases reported to CDC, 2014. Atlanta, GA: Centers for Disease Control and Prevention.Google Scholar
  9. Chen, A. J., Hasan, N. A., Haley, B. J., Taviani, E., Tarnowski, M., Brohawn, K., Johnson, C. N., Colwell, R. R., & Huq, A. (2017). Characterization of pathogenic Vibrio parahaemolyticus from the Chesapeake Bay, Maryland. Frontiers in Microbiology.  https://doi.org/10.3389/fmicb.2017.02460.Google Scholar
  10. Chowdhury, N. R., Stine, O. C., Morris, J. G., & Nair, G. B. (2004). Assessment of evolution of pandemic Vibrio parahaemolyticus by multilocus sequence typing. Journal of Clinical Microbiology, 42, 1280–1282.CrossRefGoogle Scholar
  11. Comeau, A. M., Buenaventura, E., & Suttle, C. A. (2005). A persistent, productive, and seasonally dynamic vibriophage population within Pacific oysters (Crassostrea gigas). Applied and Environmental Microbiology, 71, 5324–5331.CrossRefGoogle Scholar
  12. Daniels, N. A., Ray, B., Easton, A., Marano, N., Kahn, E., McShan, A. L., Del Rosario, L., Baldwin, T., Kingsley, M. A., Puhr, N. D., Wells, J. G., & Angulo, F. J. (2000). Emergence of a new Vibrio parahaemolyticus serotype in raw oysters: A prevention quandary. JAMA, 284, 1541–1545.CrossRefGoogle Scholar
  13. DePaola, A., Hopkins, L. H., Peeler, J. T., Wentz, B., & McPhearson, R. M. (1990). Incidents of Vibrio parahaemolyticus in United States coastal waters and oysters. Applied and Environmental Microbiology, 56, 2299–2302.Google Scholar
  14. DePaola, A., Jones, J. L., Woods, J., Burkhardt, W. I. I. I., Calci, C. R., Krantz, J. A., Bowers, J. C., Kasturi, K., Byars, R. H., Jacobs, E., William-Hill, D., & Nabe, K. (2010). Bacterial and viral pathogens in live oysters: 2007 United States market survey. Applied and Environmental Microbiology, 76, 2754–2768.CrossRefGoogle Scholar
  15. DePaola, A., Kaysner, C. A., Bowers, J., & Cook, D. W. (2000). Environmental investigations of Vibrio parahaemolyticus in oysters after outbreaks in Washington, Texas, and New York (1997 and 1998). Applied and Environmental Microbiology, 66, 4649–4654.CrossRefGoogle Scholar
  16. DePaola, A., McElroy, S., & McManus, G. (1997). Distribution of Vibrio vulnificus phage in oyster tissues and other estuarine habitats. Applied and Environmental Microbiology, 63, 2464–2467.Google Scholar
  17. DePaola, A., Motes, M. L., Chan, A. M., & Suttle, C. A. (1998). Phages infecting Vibrio vulnificus are abundant and diverse in oysters (Crassostrea virginica) collected from the Gulf of Mexico. Applied and Environmental Microbiology, 64, 346–351.Google Scholar
  18. DePaola, A., Nordstorm, J. L., Bowers, J. C., Wells, J. G., & Cook, D. W. (2003a). Seasonal abundance of total and pathogenic Vibrio parahaemolyticus in Alabama oysters. Applied and Environmental Microbiology, 69, 1521–1526.CrossRefGoogle Scholar
  19. DePaola, A., Ulaszek, J., Kaysner, C. A., Tenge, B. J., Nordstrom, J. L., Wells, J., Puhr, N., & Gendel, S. M. (2003b). Molecular, serological, and virulence characteristics of Vibrio parahaemolyticus isolated from environmental, food, and clinical sources in North America and Asia. Applied and Environmental Microbiology, 69, 3999–4005.CrossRefGoogle Scholar
  20. Elmahdi, S., Parveen, S., Ossai, S., DaSilva, L. V., Jahncke, M., Bowers, J., & Jacobs, J. (2018). Vibrio parahaemolyticus and Vibrio vulnificus recovered from oysters during an oyster relay study. Applied and Environmental Microbiology, 84, e01790-17.  https://doi.org/10.1128/AEM.01790-17.CrossRefGoogle Scholar
  21. Holmfeldt, K., Solonenko, N., Shah, M., Corrier, K., Riemann, L., VerBerkmoes, N. C., & Sullivan, M. B. (2013). Twelve previously unknown phage genera are ubiquitous in global oceans. Proceedings National Academy of Sciences USA. 110, 12798–12803.CrossRefGoogle Scholar
  22. Honda, T., Abad-Lapuebla, M. A., Ni, Y. X., Yamamoto, K., & Miwatani, T. (1991). Characterization of a new thermostable direct haemolysin produced by a Kanagawa-phenomenon-negative clinical isolate of Vibrio parahaemolyticus. Journal of General Microbiology, 137, 253–259.  https://doi.org/10.1099/00221287-137-2-253.CrossRefGoogle Scholar
  23. Honda, T., & Iida, T. (1993). The pathogenicity of Vibrio parahaemolyticus and the role of the thermostable direct haemolysin and related haemolysins. Reviews in Medical Microbiology, 4, 106–113.CrossRefGoogle Scholar
  24. Honda, T., Ni, Y., & Miwatani, T. (1988). Purification and characterization of a hemolysin produced by a clinical isolate of Kanagawa phenomenon-negative Vibrio parahaemolyticus and related to the thermostable direct hemolysin. Infection and Immunity, 56, 961–965.Google Scholar
  25. Hundenborn, J., Thurig, S., Kommerell, M., Haag, H., & Nolte, O. (2013). Severe wound infection with Photobacterium damselae ssp. damselae and Vibrio harveyi, following a laceration injury in marine environment: A case report and review of the literature. Case Reports in Medicine.  https://doi.org/10.1155/2013/610632.Google Scholar
  26. Jacobs Slifka, K. M., Newton, A. E., & Mahon, B. E. (2017). Vibrio alginolyticus infections in the USA, 1988–2012. Epidemiology and Infection, 145, 1491–1499.CrossRefGoogle Scholar
  27. Johnson, C. N., Flowers, A. R., Noriea, N. F. I. I. I., Zimmerman, A. M., Bowers, J. C., DePaola, A., & Grimes, D. J. (2010). Relationship between environmental factors and pathogenic vibrios in the northern Gulf of Mexico. Applied and Environmental Microbiology, 76, 7076–7084.CrossRefGoogle Scholar
  28. Jones, J. L., Noe, K. E., Byars, R., & DePaola, A. (2009). Evaluation of DNA colony hybridization and real-time PCR for detection of Vibrio parahaemolyticus and Vibrio vulnificus in postharvest-processed oysters. Journal of Food Protection, 72, 2106–2109.CrossRefGoogle Scholar
  29. Kalatzis, P. G., Castillo, D., Katharios, P., & Middelboe, M. (2018). Bacteriophage interactions with marine pathogenic vibrios: Implications for phage therapy. Antibiotics, 7, 15.  https://doi.org/10.3390/antibiotics7010015.CrossRefGoogle Scholar
  30. Kaneko, T., & Colwell, R. R. (1973). Ecology of Vibrio parahaemolyticus in Chesapeake Bay. Journal of Bacteriology, 113, 24–32.Google Scholar
  31. Kauffman, K. M., Hussain, F. A., Yang, J., Arevalo, P., Brown, J. M., Chang, W. K., VanInsberghe, D., Elsherbini, J., Sharma, R. S., Cutler, M. B., Kelly, L., & Polz, M. F. (2018). A major lineage of non-tailed dsDNA viruses as unrecognized killers of marine bacteria. Nature, 554, 118–122.CrossRefGoogle Scholar
  32. Kinsey, T. P., Lydon, K. A., Bowers, J. C., & Jones, J. L. (2015). Effects of dry storage and resubmersion of oysters on total Vibrio vulnificus and total and pathogenic (tdh+/trh+) Vibrio parahaemolyticus levels. Journal of Food Protection, 78, 1574–1580.CrossRefGoogle Scholar
  33. Klein, S. L., & Lovell, C. R. (2017). The hot oyster: Levels of virulent Vibrio parahaemolyticus strains in individual oysters. FEMS Microbiology Ecology.  https://doi.org/10.1093/femsec/fiw232.Google Scholar
  34. Marquis, N. D., Record, N. R., & Robledo, J. A. (2015). Survey for protozoan parasites in Eastern oysters (Crassostrea virginica) from the Gulf of Maine using PCR-based assays. Parasitology International, 64, 299–302.CrossRefGoogle Scholar
  35. Miyamoto, Y., Kato, T., Obra, S., Akiyama, S., Takiyawa, K., & Yamai, S. (1969). In vitro characteristics of Vibrio parahaemolyticus: Its close correlation with human pathogenicity. Journal of Bacteriology, 100, 1147–1149.Google Scholar
  36. Nair, G. B., Ramamurthy, T., Bhattacharya, S. K., Dutta, B., Takeda, Y., & Sack, D. A. (2007). Global dissemination of Vibrio parahaemolyticus serotype O3:K6 and its serovariants. Clinical Microbiology Reviews, 20, 39–48.CrossRefGoogle Scholar
  37. Nordstrom, J. L., Vickery, M. C. L., Blackstone, G. M., Murray, S. L., & DePaola, A. (2007). Development of a multiplex real-time PCR assay with an internal amplification control for the detection of total and pathogenic Vibrio parahaemolyticus bacteria in oysters. Applied and Environmental Microbiology, 73, 5840–5847.CrossRefGoogle Scholar
  38. Okuda, J., Ishibashi, M., Hayakawa, E., Nishino, T., Takeda, Y., Mukhopadhyay, A. K., Garg, S., Bhattacharya, S. K., Nair, G. B., & Nishibuchi, M. (1997). Emergence of a unique O3:K6 clone of Vibrio parahaemolyticus in Calcutta, India, and isolation of strains from the same clonal group from Southeast Asian travelers arriving in Japan. Journal of Clinical Microbiology, 35, 3150–3155.Google Scholar
  39. Oliveira, J., Castilho, F., Cunha, A., & Pereira, M. J. (2012). Bacteriophage therapy as a bacterial control strategy in aquaculture. Aquaculture International, 20, 879–910.CrossRefGoogle Scholar
  40. Pellon, W., Siebeling, R. J., Simonson, J., & Luftig, R. B. (1995). Isolation of bacteriophage infectious for Vibrio vulnificus. Current Microbiology, 30, 331–336.CrossRefGoogle Scholar
  41. Preeprem, S., Singkhamanan, K., Nishibuchi, M., Vuddhakul, V., & Mittraparp-Arthorn, P. (2018). Multiple multilocus variable-number tandem-repeat analysis for typing of pandemic Vibrio parahaemolyticus O1:KUT isolates. Foodborne Pathogens and Disease.  https://doi.org/10.1089/fpd.2018.2505.Google Scholar
  42. Richards, G. P. (2014). Bacteriophage remediation of bacterial pathogens in aquaculture: A review of the technology. Bacteriophage.  https://doi.org/10.4161/21597081.2014.975540.Google Scholar
  43. Richards, G. P., Fay, J. P., Uknalis, J., Olanya, O. M., & Watson, M. A. (2016). Purification and host specificity of predatory Halobacteriovorax isolated from seawater. Applied and Environmental Microbiology, 82, 922–927.CrossRefGoogle Scholar
  44. Richards, G. P., Watson, M. A., Needleman, D. S., Uknalis, J., Boyd, E. F., & Fay, J. P. (2017). Mechanisms for Pseudoalteromonas piscicida-induced killing of vibrios and other bacterial pathogens. Applied and Environmental Microbiology, 83(11), e00175.17.  https://doi.org/10.1128/AEM.00175-17.CrossRefGoogle Scholar
  45. Rosche, T. M., Yano, Y., & Oliver, J. D. (2005). A rapid and simple PCR analysis indicates there are two subgroups of Vibrio vulnificus which correlate with clinical or environmental isolation. Microbiology and Immunology, 49, 381–389.CrossRefGoogle Scholar
  46. Shirai, H., Ito, H., Hirramaya, T., Nakamoto, T., Nakabayashi, N., Kumagai, K., Takeda, Y., & Nishibuchi, M. (1990). Molecular epidemiologic evidence for association of thermostable direct hemolysin (TDH) and TDH-related hemolysin of Vibrio parahaemolyticus with gastroenteritis. Infection and Immunity, 58, 3568–3573.Google Scholar
  47. Tada, J., Ohashi, T., Nishimura, N., Shirasaki, Y., Ozaki, H., Fukushima, S., Takano, J., Nishibuchi, M., & Takeda, Y. (1992). Detection of the thermostable direct hemolysin gene (tdh) and the thermostable direct hemolysin-related hemolysin gene (trh) of Vibrio parahaemolyticus by polymerase chain reaction. Molecular and Cellular Probes, 6, 477–487.CrossRefGoogle Scholar
  48. Tamplin, M. L., Jackson, J. K., Buchrieser, C., Murphree, R. L., Portier, K. M., Gangar, V., Miller, L. G., & Kaspar, C. W. (1996). Pulsed-field gel electrophoresis and ribotype profiles of clinical and environmental Vibrio vulnificus isolates. Applied and Environmental Microbiology, 62, 3572–3580.Google Scholar
  49. U. S. Food and Drug Administration. (2017). National Shellfish Sanitation Program (NSSP) Guide for the control of molluscan shellfish. Washington, DC: U.S. Department of Health and Human Services, FDA (revision).Google Scholar
  50. Warner, E., & Oliver, J. D. (2008a). Multiplex PCR assay for detection and simultaneous differentiation of genotypes of Vibrio vulnificus biotype 1. Foodborne Pathogens and Disease, 5, 691–693.CrossRefGoogle Scholar
  51. Warner, E., & Oliver, J. D. (2008b). Population structure of two genotypes of Vibrio vulnificus in oysters (Crassostrea virginica) and seawater. Applied and Environmental Microbiology, 74, 80–85.CrossRefGoogle Scholar
  52. Whitaker, W. B., Parent, M. A., Naughton, L. M., Richards, G. P., Blumerman, S. L., & Boyd, E. F. (2010). Modulation of responses of Vibrio parahaemolyticus O3:K6 to pH and temperature stresses by growth at different salt concentrations. Applied and Environmental Microbiology, 76, 4720–4729.CrossRefGoogle Scholar
  53. Zhang, H., Yang, Z., Zhou, Y., Bao, H., Wang, R., Li, T., Pang, M., Sun, L., & Zhou, X. (2018). Application of a phage in decontaminating Vibrio parahaemolyticus in oysters. International Journal of Food Microbiology, 275, 24–31.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Gary P. Richards
    • 1
    Email author
  • Lathadevi K. Chintapenta
    • 2
    • 6
  • Michael A. Watson
    • 1
  • Amanda G. Abbott
    • 2
  • Gulnihal Ozbay
    • 2
  • Joseph Uknalis
    • 3
  • Abolade A. Oyelade
    • 4
  • Salina Parveen
    • 5
  1. 1.United States Department of Agriculture, Agricultural Research ServiceDelaware State University, James Baker CenterDoverUSA
  2. 2.College of Agriculture Science and TechnologyDelaware State UniversityDoverUSA
  3. 3.United States Department of Agriculture, Agricultural Research ServiceWyndmoorUSA
  4. 4.New Jersey Department of Environmental ProtectionLeeds PointUSA
  5. 5.Department of Agriculture, Food and Resource SciencesUniversity of Maryland Eastern ShorePrincess AnneUSA
  6. 6.University of Wisconsin – River FallsRiver FallsUSA

Personalised recommendations