Food and Environmental Virology

, Volume 11, Issue 1, pp 52–64 | Cite as

Detection of Human Enteric Viruses in French Polynesian Wastewaters, Environmental Waters and Giant Clams

  • Laetitia Kaas
  • Leslie Ogorzaly
  • Gaël Lecellier
  • Véronique Berteaux-Lecellier
  • Henry-Michel Cauchie
  • Jérémie LangletEmail author
Original Paper


Lack of wastewater treatment efficiency causes receiving seawaters and bivalve molluscan shellfish to become contaminated, which can lead to public health issues. Six wastewater samples, five seawater samples and three batches of giant clams from Tahiti (French Polynesia) were investigated for the presence of enteric viruses, but also if present, for the diversity, infectivity and integrity of human adenoviruses (HAdV). Enteroviruses (EV), sapoviruses (SaV) and human polyomaviruses (HPyV) were detected in all wastewater samples. In decreasing frequency, noroviruses (NoV) GII and HAdV, rotaviruses (RoV), astroviruses (AsV), NoV GI and finally hepatitis E viruses (HEV) were also observed. Nine types of infectious HAdV were identified. HPyV and EV were found in 80% of seawater samples, NoV GII in 60%, HAdV and SaV in 40% and AsV and RoV in 20%. NoV GI and HEV were not detected in seawater. Intact and infectious HAdV-41 were detected in one of the two seawater samples that gave a positive qPCR result. Hepatitis A viruses were never detected in any water types. Analysis of transcriptomic data from giant clams revealed homologues of fucosyltransferases (FUT genes) involved in ligand biosynthesis that strongly bind to certain NoV strains, supporting the giant clams ability to bioaccumulate NoV. This was confirmed by the presence of NoV GII in one of the three batches of giant clams placed in a contaminated marine area. Overall, all sample types were positive for at least one type of virus, some of which were infectious and therefore likely to cause public health concerns.


Noroviruses Enteric viruses Adenoviruses Wastewater Recreational water Giant clams Infectivity Next-generation sequencing 



This work has been undertaken as part of a research project co-funded by the Pacific Fund of the French Ministry of Foreign and European Affairs, project No. 07 / 2015. The authors want to thank the Embassy of France in New Zealand, Stéphane Lastère (Centre Hospitalier de Polynésie française—CHPf) as well Maréva Vigneron and Glenda Melix (Centre d’Hygiène et de Salubrité Publique—CHSP) for advice on study site selection and water samplings. Special thanks to Joanne Hewitt (Institute of Environmental Science and Research—ESR) for her valuable assistance and Cécile Walczak and Delphine Collard (Luxembourg Institute of Science and Technology—LIST) for their precious and excellent technical assistance. Joanne Hewitt and Pradip Gyawali (Institute of Environmental Science and Research—ESR) are also acknowledged for their critical review of the manuscript.

Compliance with Ethical Standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical Approval

The manuscript does not contain clinical studies or patient data.


  1. Allard, A., Albinsson, B., & Wadell, G. (2001). Rapid typing of human adenoviruses by a general PCR combined with restriction endonuclease analysis. Journal of Clinical Microbiology, 39(2), 498–505.Google Scholar
  2. Atmar, R. L., Opekun, A. R., Gilger, M. A., Estes, M. K., Crawford, S. E., Neill, F. H.,… Graham, D. Y. (2014). Determination of the 50% human infectious dose for Norwalk virus. Journal of Infectious Diseases, 209(7), 1016–1022.Google Scholar
  3. Aw, T. G., & Gin, K. Y. (2010). Environmental surveillance and molecular characterization of human enteric viruses in tropical urban wastewaters. Journal of Applied Microbiology, 109(2), 716–730.Google Scholar
  4. Bofill-Mas, S., Albinana-Gimenez, N., Clemente-Casares, P., Hundesa, A., Rodriguez-Manzano, J., Allard, A.,… Girones, R. (2006). Quantification and stability of human adenoviruses and polyomavirus JCPyV in wastewater matrices. Applied and Environmental Microbiology, 72(12), 7894–7896.Google Scholar
  5. Bofill-Mas, S., Pina, S., & Girones, R. (2000). Documenting the epidemiologic patterns of polyomaviruses in human populations by studying their presence in urban sewage. Applied and Environmental Microbiology, 66(1), 238–245.Google Scholar
  6. Bosch, A. (2007). Human viruses in water: Perspectives in medical virology. Burlington: Elsevier Science.Google Scholar
  7. CHSP (2013). Etat des lieux de l’assainissement collectif des eaux usées domestiques en Polynésie française, Centre d’Hygiène et de Salubrité Publique.Google Scholar
  8. CHSP (2016). Qualité bactériologique des eaux de baignade - Iles de Tahiti, Moorea, Bora Bora, Raiatea et Tubuai. Campagne 2014–2015, Centre d’Hygiène et de Salubrité Publique.Google Scholar
  9. Costafreda, M. I., Bosch, A., & Pinto, R. M. (2006). Development, evaluation, and standardization of a real-time TaqMan reverse transcription-PCR assay for quantification of hepatitis A virus in clinical and shellfish samples. Applied and Environmental Microbiology, 72(6), 3846–3855.Google Scholar
  10. Diez-Valcarce, M., Kokkinos, P., Soderberg, K., Bouwknegt, M., Willems, K., de Roda-Husman, A. M.,… Rodriguez-Lazaro, D. (2012). Occurrence of human enteric viruses in commercial mussels at retail level in three European countries. Food and Environmental Virology, 4(2), 73–80.Google Scholar
  11. Donaldson, K. A., Griffin, D. W., & Paul, J. H. (2002). Detection, quantitation and identification of enteroviruses from surface waters and sponge tissue from the Florida Keys using real-time RT-PCR. Water Research, 36(10), 2505–2514.Google Scholar
  12. Dubousquet, V., Gros, E., Berteaux-Lecellier, V., Viguier, B., Raharivelomanana, P., Bertrand, C., & Lecellier, G. J. (2016). Changes in fatty acid composition in the giant clam Tridacna maxima in response to thermal stress. Biology Open, 5(10), 1400–1407.Google Scholar
  13. EFSA Panel on Biological Hazards. (2011). Scientific opinion on an update on the present knowledge on the occurrence and control of foodborne viruses. European Food Safety Authority Journal, 9(7), 2190.Google Scholar
  14. Ettayebi, K., Crawford, S. E., Murakami, K., Broughman, J. R., Karandikar, U., Tenge, V. R.,… Qu, L. (2016). Replication of human noroviruses in stem cell-derived human enteroids. Science, 353(6306), 1387–1393.Google Scholar
  15. Fongaro, G., Hernández, M., García-González, M. C., Barardi, C. R. M., & Rodríguez-Lázaro, D. (2016). Propidium monoazide coupled with PCR predicts infectivity of enteric viruses in swine manure and biofertilized soil. Food and Environmental Virology, 8(1), 79–85.Google Scholar
  16. Gerba, C. P., & Haas, C. N. (1988). Assessment of risks associated with enteric viruses in contaminated drinking water. In J. J. Lichtenberg, J. A. Winter, C. I. Weber & L. Fradkin (Eds.), Chemical and biological characterization of municipal sludges, sediments, dredge spoils, and drilling muds (pp. 489–495). Philadelphia: American Society for Testing and Materials.Google Scholar
  17. Glass, R. I., Noel, J., Ando, T., Fankhauser, R., Belliot, G., Mounts, A.,… Monroe, S. S. (2000). The epidemiology of enteric caliciviruses from humans: A reassessment using new diagnostics. Journal of Infectious Diseases, 181(Suppl 2), 254–261.Google Scholar
  18. Greening, G. E., & Hewitt, J. (2008). Norovirus detection in shellfish using a rapid, sensitive virus recovery and real-time RT-PCR detection protocol. Food Analytical Methods, 1(2), 109–118.Google Scholar
  19. Greening, G. E., Hewitt, J., Rivera-Aban, M., & Croucher, D. (2012). Molecular epidemiology of norovirus gastroenteritis outbreaks in New Zealand from 2002 to 2009. Journal of Medical Virology, 84(9), 1449–1458.Google Scholar
  20. Grodzki, M., Ollivier, J., Le Saux, J. C., Piquet, J. C., Noyer, M., & Le Guyader, F. S. (2012). Impact of Xynthia tempest on viral contamination of shellfish. Applied and Environmental Microbiology, 78(9), 3508–3511.Google Scholar
  21. Haile, R. W., Witte, J. S., Gold, M., Cressey, R., McGee, C., Millikan, R. C.,… Harmon, P. (1999). The health effects of swimming in ocean water contaminated by storm drain runoff. Epidemiology, 10(4), 355–363.Google Scholar
  22. Hamza, I. A., Jurzik, L., Überla, K., & Wilhelm, M. (2011). Methods to detect infectious human enteric viruses in environmental water samples. International Journal of Hygiene and Environmental Health, 214(6), 424–436.Google Scholar
  23. He, X. Q., Cheng, L., Zhang, D. Y., Xie, X. M., Wang, D. H., & Wang, Z. (2011). One-year monthly survey of rotavirus, astrovirus and norovirus in three sewage treatment plants (STPs) in Beijing, China and associated health risk assessment. Water Science and Technology, 64(6), 1202–1210.Google Scholar
  24. Hernroth, B. E., Conden-Hansson, A. C., Rehnstam-Holm, A. S., Girones, R., & Allard, A. K. (2002). Environmental factors influencing human viral pathogens and their potential indicator organisms in the blue mussel, Mytilus edulis: The first Scandinavian report. Applied and Environmental Microbiology, 68(9), 4523–4533.Google Scholar
  25. Hewitt, J., Greening, G. E., Leonard, M., & Lewis, G. D. (2013). Evaluation of human adenovirus and human polyomavirus as indicators of human sewage contamination in the aquatic environment. Water Research, 47(17), 6750–6761.Google Scholar
  26. Hewitt, J., Leonard, M., Greening, G. E., & Lewis, G. D. (2011). Influence of wastewater treatment process and the population size on human virus profiles in wastewater. Water Research, 45(18), 6267–6276.Google Scholar
  27. Hewitt, J., Rivera-Aban, M., & Greening, G. E. (2009). Evaluation of murine norovirus as a surrogate for human norovirus and hepatitis A virus in heat inactivation studies. Journal of Applied Microbiology, 107(1), 65–71.Google Scholar
  28. Hill, V. R., Polaczyk, A. L., Hahn, D., Narayanan, J., Cromeans, T. L., Roberts, J. M., & Amburgey, J. E. (2005). Development of a rapid method for simultaneous recovery of diverse microbes in drinking water by ultrafiltration with sodium polyphosphate and surfactants. Applied and Environmental Microbiology, 71(11), 6878–6884.Google Scholar
  29. ISPF. (2012). “Tourism in French Polynesia” from
  30. Jalal, H., Bibby, D. F., Tang, J. W., Bennett, J., Kyriakou, C., Peggs, K.,… Tedder, R. S. (2005). First reported outbreak of diarrhea due to adenovirus infection in a hematology unit for adults. Journal of Clinical Microbiology, 43(6), 2575–2580.Google Scholar
  31. Jones, D. S., Williams, D. F., & Romanek, C. S. (1986). Life history of symbiont-bearing giant clams from stable isotope profiles. Science, 231(4733), 46–48.Google Scholar
  32. Jothikumar, N., Cromeans, T. L., Robertson, B. H., Meng, X. J., & Hill, V. R. (2006). A broadly reactive one-step real-time RT-PCR assay for rapid and sensitive detection of hepatitis E virus. Journal of Virological Methods, 131(1), 65–71.Google Scholar
  33. Jothikumar, N., Lowther, J. A., Henshilwood, K., Lees, D. N., Hill, V. R., & Vinjé, J. (2005). Rapid and sensitive detection of noroviruses by using TaqMan-based one-step reverse transcription-PCR assays and application to naturally contaminated shellfish samples. Applied and Environmental Microbiology, 71(4), 1870–1875.Google Scholar
  34. Kaas, L., Gourinat, A. C., Urbès, F., & Langlet, J. (2016). A 1-Year study on the detection of human enteric viruses in New Caledonia. Food and Environmental Virology, 8(1), 46–56.Google Scholar
  35. Kaba, M., Davoust, B., Cabre, O., & Colson, P. (2011). Hepatitis E virus genotype 3f in pigs in New Caledonia. Australian Veterinary Journal, 89(12), 496–499.Google Scholar
  36. Kageyama, T., Kojima, S., Shinohara, M., Uchida, K., Fukushi, S., Hoshino, F. B.,… Katayama, K. (2003). Broadly reactive and highly sensitive assay for Norwalk-like viruses based on real-time quantitative reverse transcription-PCR. Journal of Clinical Microbiology, 41(4), 1548–1557.Google Scholar
  37. Katayama, H., Haramoto, E., Oguma, K., Yamashita, H., Tajima, A., Nakajima, H., & Ohgaki, S. (2008). One-year monthly quantitative survey of noroviruses, enteroviruses, and adenoviruses in wastewater collected from six plants in Japan. Water Research, 42(6–7), 1441–1448.Google Scholar
  38. Kozich, J. J., Westcott, S. L., Baxter, N. T., Highlander, S. K., & Schloss, P. D. (2013). Development of a dual-index sequencing strategy and curation pipeline for analyzing amplicon sequence data on the MiSeq Illumina sequencing platform. Applied and Environmental Microbiology, 79(17), 5112–5120.Google Scholar
  39. Laconelli, M., Valdazo-González, B., Equestre, M., Ciccaglione, A., Marcantonio, C., Della Libera, S., & La Rosa, G. (2017). Molecular characterization of human adenoviruses in urban wastewaters using next generation and Sanger sequencing. Water Research, 121, 240–247.Google Scholar
  40. Langlet, J., Kaas, L., & Greening, G. (2015). Binding-based RT-qPCR assay to assess binding patterns of noroviruses to shellfish. Food and Environmental Virology, 7(2), 88–95.Google Scholar
  41. Le Cann, P., Ranarijaona, S., Monpoeho, S., Le Guyader, F., & Ferre, V. (2004). Quantification of human astroviruses in sewage using real-time RT-PCR. Research in Microbiology, 155(1), 11–15.Google Scholar
  42. Le Guern, A., Eftekhari-Hassanlouie, S., Lastere, S., Beaugendre, E., & Oehler, E. (2015). Hepatitis E in French Polynesia. Médecine et Maladies Infectieuses, 45(7), 301–302.Google Scholar
  43. Le Guyader, F. S., & Atmar, R. L. (2007). Chapter 10 Viruses in shellfish. In A. Bosch (Ed.), Perspectives in medical virology, Volume 17, (pp. 205–226). Amsterdam: Elsevier.Google Scholar
  44. Le Guyader, F. S., Bon, F., DeMedici, D., Parnaudeau, S., Bertone, A., Crudeli, S.,… Ruggeri, F. M. (2006). Detection of multiple noroviruses associated with an international gastroenteritis outbreak linked to oyster consumption. Journal of Clinical Microbiology, 44(11), 3878–3882.Google Scholar
  45. Le Guyader, F. S., Le Saux, J. C., Ambert-Balay, K., Krol, J., Serais, O., Parnaudeau, S.,… Atmar, R. L. (2008). Aichi virus, norovirus, astrovirus, enterovirus, and rotavirus involved in clinical cases from a French oyster-related gastroenteritis outbreak. Journal of Clinical Microbiology, 46(12), 4011–4017.Google Scholar
  46. Lees, D. (2010). International standardisation of a method for detection of human pathogenic viruses in molluscan shellfish. Food and Environmental Virology, 2(3), 146–155.Google Scholar
  47. Lion, T. (2014). Adenovirus infections in immunocompetent and immunocompromised patients. Clinical Microbiology Reviews, 27(3), 441–462.Google Scholar
  48. Maalouf, H., Schaeffer, J., Parnaudeau, S., Le Pendu, J., Atmar, R. L., Crawford, S. E., & Le Guyader, F. S. (2011). Strain-dependent norovirus bioaccumulation in oysters. Applied and Environmental Microbiology, 77(10), 3189–3196.Google Scholar
  49. Maalouf, H., Zakhour, M., Le Pendu, J., Le Saux, J. C., Atmar, R. L., & Le Guyader, F. S. (2010). Distribution in tissue and seasonal variation of norovirus genogroup I and II ligands in oysters. Applied and Environmental Microbiology, 76(16), 5621–5630.Google Scholar
  50. Matsushima, Y., Shimizu, H., Phan, T. G., & Ushijima, H. (2011). Genomic characterization of a novel human adenovirus type 31 recombinant in the hexon gene. Journal of General Virology, 92(12), 2770–2775.Google Scholar
  51. McQuaig, S. M., Scott, T. M., Lukasik, J. O., Paul, J. H., & Harwood, V. J. (2009). Quantification of human polyomaviruses JC Virus and BK Virus by TaqMan quantitative PCR and comparison to other water quality indicators in water and fecal samples. Applied and Environmental Microbiology, 75(11), 3379–3388.Google Scholar
  52. Mena, K. D., & Gerba, C. P. (2009). Waterborne adenovirus. Reviews of Environmental Contamination and Toxicology, 198, 133–167.Google Scholar
  53. Ngazoa, E. S., Fliss, I., & Jean, J. (2008). Quantitative study of persistence of human norovirus genome in water using TaqMan real-time RT-PCR. Journal of Applied Microbiology, 104(3), 707–715.Google Scholar
  54. Nuanualsuwan, S., & Cliver, D. O. (2002). Pretreatment to avoid positive RT-PCR results with inactivated viruses. Journal of Virological Methods, 104(2), 217–225.Google Scholar
  55. O’Hara, Z., Crossan, C., Craft, J., & Scobie, L. (2018). First report of the presence of hepatitis E virus in Scottish-harvested shellfish purchased at retail level. Food and Environmental Virology, 10(2), 217–221.Google Scholar
  56. Ogorzaly, L., Bonot, S., Moualij, B. E., Zorzi, W., & Cauchie, H. M. (2013a). Development of a quantitative immunocapture real-time PCR assay for detecting structurally intact adenoviral particles in water. Journal of Virological Methods, 194(1–2), 235–241.Google Scholar
  57. Ogorzaly, L., Cauchie, H. M., Penny, C., Perrin, A., Gantzer, C., & Bertrand, I. (2013b). Two-day detection of infectious enteric and non-enteric adenoviruses by improved ICC-qPCR. Applied Microbiology and Biotechnology, 97(9), 4159–4166.Google Scholar
  58. Ogorzaly, L., Walczak, C., Galloux, M., Etienne, S., Gassilloud, B., & Cauchie, H. M. (2015). Human adenovirus diversity in water samples using a next-generation amplicon sequencing approach. Food and Environmental Virology, 7(2), 112–121.Google Scholar
  59. Pang, X. L., Lee, B., Boroumand, N., Leblanc, B., Preiksaitis, J. K., & Yu Ip, C. C. (2004). Increased detection of rotavirus using a real time reverse transcription-polymerase chain reaction (RT-PCR) assay in stool specimens from children with diarrhea. Journal of Medical Virology, 72(3), 496–501.Google Scholar
  60. Richards, G. P. (1999). Limitations of molecular biological techniques for assessing the virological safety of foods. Journal of Food Protection, 62(6), 691–697.Google Scholar
  61. Sano, D., Pinto, R. M., Omura, T., & Bosch, A. (2010). Detection of oxidative damages on viral capsid protein for evaluating structural integrity and infectivity of human norovirus. Environmental Science and Technology, 44(2), 808–812.Google Scholar
  62. Schloss, P. D., Westcott, S. L., Ryabin, T., Hall, J. R., Hartmann, M., Hollister, E. B.,… Weber, C. F. (2009). Introducing mothur: Open-source, platform-independent, community-supported software for describing and comparing microbial communities. Applied and Environmental Microbiology, 75(23), 7537–7541.Google Scholar
  63. Silva, H. D., García-Zapata, M. T. A., & Anunciação, C. E. (2011). Why the use of adenoviruses as water quality virologic marker? Food and Environmental Virology, 3(3), 138–140.Google Scholar
  64. Sinclair, R., Jones, E., & Gerba, C. (2009). Viruses in recreational water-borne disease outbreaks: A review. Journal of Applied Microbiology, 107(6), 1769–1780.Google Scholar
  65. Skraber, S., Langlet, J., Kremer, J. R., Mossong, J., De Landtsheer, S., Even, J.,… Cauchie, H. M. (2011). Concentration and diversity of noroviruses detected in Luxembourg wastewaters in 2008–2009. Applied and Environmental Microbiology, 77(15), 5566–5568.Google Scholar
  66. Svraka, S., Vennema, H., van der Veer, B., Hedlund, K. O., Thorhagen, M., Siebenga, J.,… Koopmans, M. (2010). Epidemiology and genotype analysis of emerging sapovirus-associated infections across Europe. Journal of Clinical Microbiology, 48(6), 2191–2198.Google Scholar
  67. Tian, P., Bates, A. H., Jensen, H. M., & Mandrell, R. E. (2006). Norovirus binds to blood group A-like antigens in oyster gastrointestinal cells. Letters in Applied Microbiology, 43(6), 645–651.Google Scholar
  68. Tian, P., Engelbrektson, A. L., Jiang, X., Zhong, W., & Mandrell, R. E. (2007). Norovirus recognizes histo-blood group antigens on gastrointestinal cells of clams, mussels, and oysters: A possible mechanism of bioaccumulation. Journal of Food Protection, 70(9), 2140–2147.Google Scholar
  69. Tian, P., Engelbrektson, A. L., & Mandrell, R. E. (2008). Seasonal tracking of histo-blood group antigen expression and norovirus binding in oyster gastrointestinal cells. Journal of Food Protection, 71(8), 1696–1700.Google Scholar
  70. Tong, H. I., Connell, C., Boehm, A. B., & Lu, Y. (2011). Effective detection of human noroviruses in Hawaiian waters using enhanced RT-PCR methods. Water Research, 45(18), 5837–5848.Google Scholar
  71. Wolf, S., Hewitt, J., & Greening, G. E. (2010). Viral multiplex quantitative PCR assays for tracking sources of fecal contamination. Applied and Environmental Microbiology, 76(5), 1388–1394.Google Scholar
  72. Wyer, M. D., Wyn-Jones, A. P., Kay, D., Au-Yeung, H.-K. C., Gironés, R., López-Pila, J.,… Schneider, O. (2012). Relationships between human adenoviruses and faecal indicator organisms in European recreational waters. Water Research, 46(13), 4130–4141.Google Scholar
  73. Wyn-Jones, A. P., Carducci, A., Cook, N., D’Agostino, M., Divizia, M., Fleischer, J.,… Wyer, M. (2011). Surveillance of adenoviruses and noroviruses in European recreational waters. Water Research, 45(3), 1025–1038.Google Scholar
  74. Zhang, M., Zhao, H., Yang, J., Jiang, S., & Cai, B. (2010). Detection and quantification of enteroviruses in coastal seawaters from Bohai Bay, Tianjin, China. Journal of Environmental Sciences, 22(1), 150–154.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Enteric, Environmental and Food Virology LaboratoryInstitute of Environmental Science and Research (ESR)PoriruaNew Zealand
  2. 2.Department of Environmental Research and Innovation (ERIN)Luxembourg Institute of Science and Technology (LIST)BelvauxLuxembourg
  3. 3.PSL CRIOBE USR3278 CNRS-EPHE-UPVD, Labex CORAILMooreaFrench Polynesia
  4. 4.Département de BiologieUniversité de Paris Saclay UVSQVersaillesFrance
  5. 5.UMR250/9220 ENTROPIE IRD-CNRS-UR, Labex CORAILNoumea CedexFrance

Personalised recommendations