Advertisement

Food and Environmental Virology

, Volume 10, Issue 1, pp 29–38 | Cite as

Estimation of Human Norovirus Infectivity from Environmental Water Samples by In Situ Capture RT-qPCR Method

  • Peng Tian
  • David Yang
  • Lei Shan
  • Qianqian Li
  • Danlei Liu
  • Dapeng Wang
Original Paper

Abstract

Human noroviruses (HuNoVs) are highly infectious viruses for which water is an important medium of transmission. In this study, we explored a new in situ capture RT-qPCR (ISC-RT-qPCR) methodology to estimate the infectivity of HuNoV in environmental water samples. This assay was based on capturing encapsidated HuNoV by viral receptors, followed by in situ amplification of the captured viral genomes by RT-qPCR. We demonstrated that the ISC-RT-qPCR did not capture and enable signal amplification of heat-denatured Tulane Virus (TV) and HuNoVs. We further demonstrated that the sensitivity of ISC-RT-qPCR was equal or better than that of conventional RT-qPCR procedures for the detection of HuNoV GI and GII. We then utilized the ISC-RT-qPCR to detect HuNoV in environmental water samples for comparison against that from a conventional RT-qPCR procedure. TV was used as a process control virus. While complete inhibition of TV genomic signal was observed in 27% of samples tested by RT-qPCR, no inhibition of TV genomic signal was observed by ISC-RT-qPCR. From 72 samples tested positive for HuNoV GI signal by RT-qPCR, only 20 (27.8%) of these samples tested positive by ISC-RT-qPCR, suggesting that 72.2% of RT-qPCR-positive samples were unlikely to be infectious. From 16 samples tested positive for HuNoV GII signal by RT-qPCR, only one of these samples tested positive by ISC-RT-qPCR. Five samples that had initially tested negative for HuNoV GII signal by RT-qPCR, was tested as positive by ISC-RT-qPCR. Overall, ISC-RT-qPCR method provided an alternative assay to estimate infectivity of HuNoV in environmental samples.

Keywords

Human norovirus Tulane virus In situ capture RT-qPCR RT-qPCR Infectivity Environmental water sample 

Notes

Acknowledgements

This work was supported by USDA Agricultural Research Service CRIS project 5325-42000-050-00D and Grant 31301475 from National Natural Science Foundation of China. USDA is an equal opportunity provider and employer.

Compliance with Ethical Standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. Atmar, R. L., Opekun, A. R., Gilger, M. A., Estes, M. K., Crawford, S. E., Neill, F. H., et al. (2008). Norwalk virus shedding after experimental human infection. Emerging Infectious Diseases Journal, 14(10), 1553–1557. doi: 10.3201/eid1410.080117.CrossRefGoogle Scholar
  2. Baert, L., Wobus, C. E., Van Coillie, E., Thackray, L. B., Debevere, J., & Uyttendaele, M. (2008). Detection of murine norovirus 1 by using plaque assay, transfection assay, and real-time reverse transcription-PCR before and after heat exposure. Applied and Environment Microbiology, 74(2), 543–546. doi: 10.1128/AEM.01039-07.CrossRefGoogle Scholar
  3. Cannon, J. L., & Vinje, J. (2008). Histo-blood group antigen assay for detecting noroviruses in water. Applied and Environmental Microbiology, 74(21), 6818–6819. doi: 10.1128/AEM.01302-08.CrossRefPubMedPubMedCentralGoogle Scholar
  4. Centers for Disease and Prevention. (2011). Surveillance for foodborne disease outbreaks–United States, 2008. MMWR Morbidity and Mortality Weekly Report, 60, 1197–1202.Google Scholar
  5. Cooley, M. B., Quinones, B., Oryang, D., Mandrell, R. E., & Gorski, L. (2014). Prevalence of shiga toxin producing Escherichia coli, Salmonella enterica, and Listeria monocytogenes at public access watershed sites in a California Central Coast agricultural region. Frontiers in Cellular and Infection Microbiology, 4, 30. doi: 10.3389/fcimb.2014.00030.CrossRefPubMedPubMedCentralGoogle Scholar
  6. Corsi, S. R., Borchardt, M. A., Spencer, S. K., Hughes, P. E., & Baldwin, A. K. (2014). Human and bovine viruses in the Milwaukee River watershed: Hydrologically relevant representation and relations with environmental variables. Science of the Total Environment, 490, 849–860. doi: 10.1016/j.scitotenv.2014.05.072.CrossRefPubMedGoogle Scholar
  7. Dancho, B. A., Chen, H., & Kingsley, D. H. (2012). Discrimination between infectious and non-infectious human norovirus using porcine gastric mucin. International Journal of Food Microbiology, 155(3), 222–226. doi: 10.1016/j.ijfoodmicro.2012.02.010.CrossRefPubMedGoogle Scholar
  8. Ettayebi, K., Crawford, S. E., Murakami, K., Broughman, J. R., Karandikar, U., Tenge, V. R., et al. (2016). Replication of human noroviruses in stem cell-derived human enteroids. Science, 353(6306), 1387–1393. doi: 10.1126/science.aaf5211.CrossRefPubMedPubMedCentralGoogle Scholar
  9. Farkas, T., Sestak, K., Wei, C., & Jiang, X. (2008). Characterization of a rhesus monkey calicivirus representing a new genus of Caliciviridae. Journal of Virology, 82(11), 5408–5416.CrossRefPubMedPubMedCentralGoogle Scholar
  10. Gentry, J., Vinje, J., Guadagnoli, D., & Lipp, E. K. (2009). Norovirus distribution within an estuarine environment. Applied and Environmental Microbiology, 75(17), 5474–5480. doi: 10.1128/AEM.00111-09.CrossRefPubMedPubMedCentralGoogle Scholar
  11. Gentry-Shields, J., & Jaykus, L. (2015). Comparison of process control viruses for use in extraction and detection of human norovirus from food matrices. Food Research International, 77, 320–325.CrossRefGoogle Scholar
  12. Haramoto, E., Katayama, H., & Ohgaki, S. (2004). Detection of noroviruses in tap water in Japan by means of a new method for concentrating enteric viruses in large volumes of freshwater. Applied and Environmental Microbiology, 70(4), 2154–2160. doi: 10.1128/AEM.70.4.2154-2160.2004.CrossRefPubMedPubMedCentralGoogle Scholar
  13. Hata, A., Katayama, H., Kitajima, M., Visvanathan, C., Nol, C., & Furumai, H. (2011). Validation of internal controls for extraction and amplification of nucleic acids from enteric viruses in water samples. Applied and Environmental Microbiology, 77(13), 4336–4343. doi: 10.1128/AEM.00077-11.CrossRefPubMedPubMedCentralGoogle Scholar
  14. He, X. Q., Cheng, L., Zhang, D. Y., Xie, X. M., Wang, D. H., & Wang, Z. (2011). One-year monthly survey of rotavirus, astrovirus and norovirus in three sewage treatment plants (STPs) in Beijing, China and associated health risk assessment. Water Science and Technology, 64(6), 1202–1210.CrossRefPubMedGoogle Scholar
  15. Hennechart-Collette, C., Martin-Latil, S., Guillier, L., & Perelle, S. (2015). Determination of which virus to use as a process control when testing for the presence of hepatitis A virus and norovirus in food and water. International Journal of Food Microbiology, 202, 57–65. doi: 10.1016/j.ijfoodmicro.2015.02.029.CrossRefPubMedGoogle Scholar
  16. Hutson, A. M., Atmar, R. L., Graham, D. Y., & Estes, M. K. (2002). Norwalk virus infection and disease is associated with ABO histo-blood group type. The Journal of Infectious Diseases, 185(9), 1335–1337. doi: 10.1086/339883.CrossRefPubMedGoogle Scholar
  17. Katayama, H., Shimasaki, A., & Ohgaki, S. (2002). Development of a virus concentration method and its application to detection of enterovirus and norwalk virus from coastal seawater. Applied and Environment Microbiology, 68(3), 1033–1039. doi: 10.1128/AEM.68.3.1033-1039.2002.CrossRefGoogle Scholar
  18. Kitajima, M., Haramoto, E., Phanuwan, C., Katayama, H., & Ohgaki, S. (2009). Detection of genogroup IV norovirus in wastewater and river water in Japan. Letters in Applied Microbiology, 49(5), 655–658. doi: 10.1111/j.1472-765X.2009.02718.x.CrossRefPubMedGoogle Scholar
  19. Kittigul, L., Panjangampatthana, A., Pombubpa, K., Taweekate, Y., Pungchitton, S., Diraphat, P., et al. (2012). Detection and genetic characterization of norovirus in environmental water samples in Thailand. Southeast Asian Journal of Tropical Medicine and Public Health, 43(2), 323–332.PubMedGoogle Scholar
  20. Kiulia, N. M., Netshikweta, R., Page, N. A., Van Zyl, W. B., Kiraithe, M. M., Nyachieo, A., et al. (2010). The detection of enteric viruses in selected urban and rural river water and sewage in Kenya, with special reference to rotaviruses. Journal of Applied Microbiology, 109(3), 818–828. doi: 10.1111/j.1365-2672.2010.04710.x.CrossRefPubMedGoogle Scholar
  21. Lee, C., & Kim, S. J. (2008). The genetic diversity of human noroviruses detected in river water in Korea. Water Research, 42(17), 4477–4484. doi: 10.1016/j.watres.2008.08.003.CrossRefPubMedGoogle Scholar
  22. Leifels, M., Jurzik, L., Wilhelm, M., & Hamza, I. A. (2015). Use of ethidium monoazide and propidium monoazide to determine viral infectivity upon inactivation by heat, UV-exposure and chlorine. International Journal of Hygiene and Environmental Health, 218(8), 686–693. doi: 10.1016/j.ijheh.2015.02.003.CrossRefPubMedGoogle Scholar
  23. Lenaker, P. L., Corsi, S. R., Borchardt, M. A., Spencer, S. K., Baldwin, A. K., & Lutz, M. A. (2017). Hydrologic, land cover, and seasonal patterns of waterborne pathogens in Great Lakes tributaries. Water Research, 113, 11–21. doi: 10.1016/j.watres.2017.01.060.CrossRefPubMedGoogle Scholar
  24. Li, X., Huang, R., & Chen, H. (2017). Evaluation of assays to quantify infectious human norovirus for heat and high-pressure inactivation studies using tulane virus. Food and Environmental Virology. doi: 10.1007/s12560-017-9288-2.PubMedCentralGoogle Scholar
  25. Lodder, W. J., & de Roda Husman, A. M. (2005). Presence of noroviruses and other enteric viruses in sewage and surface waters in The Netherlands. Applied and Environment Microbiology, 71(3), 1453–1461. doi: 10.1128/AEM.71.3.1453-1461.2005.CrossRefGoogle Scholar
  26. Love, D. C., Rodriguez, R. A., Gibbons, C. D., Griffith, J. F., Yu, Q., Stewart, J. R., et al. (2014). Human viruses and viral indicators in marine water at two recreational beaches in Southern California, USA. Journal of Water and Health, 12(1), 136–150. doi: 10.2166/wh.2013.078.CrossRefPubMedGoogle Scholar
  27. Mans, J., Netshikweta, R., Magwalivha, M., Van Zyl, W. B., & Taylor, M. B. (2013). Diverse norovirus genotypes identified in sewage-polluted river water in South Africa. Epidemiology and Infection, 141(2), 303–313. doi: 10.1017/S0950268812000490.CrossRefPubMedGoogle Scholar
  28. Marionneau, S., Ruvoen, N., Le Moullac-Vaidye, B., Clement, M., Cailleau-Thomas, A., Ruiz-Palacois, G., et al. (2002). Norwalk virus binds to histo-blood group antigens present on gastroduodenal epithelial cells of secretor individuals. Gastroenterology, 122(7), 1967–1977. doi: 10.1053/gast.2002.33661.CrossRefPubMedGoogle Scholar
  29. Nowak, P., Topping, J. R., Bellamy, K., Fotheringham, V., Gray, J. J., Golding, J. P., et al. (2011). Virolysis of feline calicivirus and human GII.4 norovirus following chlorine exposure under standardized light soil disinfection conditions. Journal of Food Protection, 74(12), 2113–2118. doi: 10.4315/0362-028X.JFP-11-087.CrossRefPubMedGoogle Scholar
  30. Randazzo, W., Lopez-Galvez, F., Allende, A., Aznar, R., & Sanchez, G. (2016). Evaluation of viability PCR performance for assessing norovirus infectivity in fresh-cut vegetables and irrigation water. International Journal of Food Microbiology, 229, 1–6.CrossRefPubMedGoogle Scholar
  31. Seitz, S. R., Leon, J. S., Schwab, K. J., Lyon, G. M., Dowd, M., McDaniels, M., et al. (2011). Norovirus infectivity in humans and persistence in water. Applied and Environmental Microbiology, 77(19), 6884–6888. doi: 10.1128/AEM.05806-11.CrossRefPubMedPubMedCentralGoogle Scholar
  32. Tan, M., & Jiang, X. (2010). Norovirus gastroenteritis, carbohydrate receptors, and animal models. PLoS Pathogens, 6(8), e1000983. doi: 10.1371/journal.ppat.1000983.CrossRefPubMedPubMedCentralGoogle Scholar
  33. Teixeira, D. M., Spada, P. K., Morais, L. L., Fumian, T. M., Lima, I. C., Oliveira, D. S., et al. (2017). Norovirus genogroups I and II in environmental water samples from Belem city, Northern Brazil. Journal of Water and Health, 15(1), 163–174. doi: 10.2166/wh.2016.275.CrossRefPubMedGoogle Scholar
  34. Tian, P., Brandl, M., & Mandrell, R. (2005). Porcine gastric mucin binds to recombinant norovirus particles and competitively inhibits their binding to histo-blood group antigens and Caco-2 cells. Letters in Applied Microbiology, 41(4), 315–320. doi: 10.1111/j.1472-765X.2005.01775.x.CrossRefPubMedGoogle Scholar
  35. Tian, P., Engelbrektson, A., & Mandrell, R. (2008). Two-log increase in sensitivity for detection of norovirus in complex samples by concentration with porcine gastric mucin conjugated to magnetic beads. Applied and Environmental Microbiology, 74(14), 4271–4276. doi: 10.1128/AEM.00539-08.CrossRefPubMedPubMedCentralGoogle Scholar
  36. Tian, P., Yang, D., & Mandrell, R. (2011). A simple method to recover Norovirus from fresh produce with large sample size by using histo-blood group antigen-conjugated to magnetic beads in a recirculating affinity magnetic separation system (RCAMS). International Journal of Food Microbiology, 147(3), 223–227. doi: 10.1016/j.ijfoodmicro.2011.04.013.CrossRefPubMedGoogle Scholar
  37. Tian, P., Yang, D., Pan, L., & Mandrell, R. (2012). Application of a receptor-binding capture quantitative reverse transcription-PCR assay to concentrate human norovirus from sewage and to study the distribution and stability of the virus. Applied and Environment Microbiology, 78(2), 429–436. doi: 10.1128/AEM.06875-11.CrossRefGoogle Scholar
  38. Tian, P., Yang, D., Quigley, C., Chou, M., & Jiang, X. (2013). Inactivation of the Tulane virus, a novel surrogate for the human norovirus. Journal of Food Protection, 76(4), 712–718. doi: 10.4315/0362-028X.JFP-12-361.CrossRefPubMedPubMedCentralGoogle Scholar
  39. Victoria, M., Rigotto, C., Moresco, V., de Abreu Correa, A., Kolesnikovas, C., Leite, J. P., et al. (2010). Assessment of norovirus contamination in environmental samples from Florianopolis City, Southern Brazil. Journal of Applied Microbiology, 109(1), 231–238. doi: 10.1111/j.1365-2672.2009.04646.x.PubMedGoogle Scholar
  40. Wang, D., & Tian, P. (2014). Inactivation conditions for human norovirus measured by an in situ capture-qRT-PCR method. International Journal of Food Microbiology, 172, 76–82. doi: 10.1016/j.ijfoodmicro.2013.11.027.CrossRefPubMedGoogle Scholar
  41. Wang, D., Xu, S., Yang, D., Young, G. M., & Tian, P. (2014). New in situ capture quantitative (real-time) reverse transcription-PCR method as an alternative approach for determining inactivation of Tulane virus. Applied and Environmental Microbiology, 80(7), 2120–2124. doi: 10.1128/AEM.04036-13.CrossRefPubMedPubMedCentralGoogle Scholar
  42. Xu, S., Wang, D., Yang, D., Liu, H., & Tian, P. (2015). Alternative methods to determine infectivity of Tulane virus: A surrogate for human nororvirus. Food Microbiology, 48, 22–27. doi: 10.1016/j.fm.2014.12.004.CrossRefPubMedGoogle Scholar
  43. Xue, C., Fu, Y., Zhu, W., Fei, Y., Zhu, L., Zhang, H., et al. (2014). An outbreak of acute norovirus gastroenteritis in a boarding school in Shanghai: A retrospective cohort study. BMC Public Health, 14, 1092. doi: 10.1186/1471-2458-14-1092.CrossRefPubMedPubMedCentralGoogle Scholar
  44. Zhou, Z., Tian, Z., Li, Q., Tian, P., Wu, Q., Wang, D., et al. (2017). In situ capture RT-qPCR: A new simple and sensitive method to detect human norovirus in oysters. Frontiers in Microbiology, 8, 554. doi: 10.3389/fmicb.2017.00554.PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC (outside the USA) 2017

Authors and Affiliations

  1. 1.Produce Safety and Microbiology Research Unit, Western Regional Research Center, Agricultural Research ServiceUnited States Department of AgricultureAlbanyUSA
  2. 2.Department of BioengineeringShanghai Institute of Technology, ShanghaiShanghaiPeople’s Republic of China
  3. 3.MOST-USDA Joint Research Center for Food Safety & Bor Luh Food Safety Center, School of Agriculture and BiologyShanghai Jiao Tong UniversityShanghaiPeople’s Republic of China

Personalised recommendations