Advertisement

Food and Environmental Virology

, Volume 9, Issue 3, pp 260–269 | Cite as

Isolation and Characterization of Bacillus cereus Bacteriophages from Foods and Soil

  • Hyejin Oh
  • Dong Joo Seo
  • Su Been Jeon
  • Hyunkyung Park
  • Suntak Jeong
  • Hyang Sook Chun
  • Mihwa Oh
  • Changsun ChoiEmail author
Original Paper

Abstract

The aim of this study was to isolate and characterize Bacillus cereus bacteriophages of various origins. Twenty-seven bacteriophages against B. cereus were isolated from various Korean traditional fermented foods and soils. Plaque size, transmission electron microscopy, virulence profile, and in vitro lytic activity of bacteriophage isolates were examined. Transmission electron microscopy confirmed B. cereus bacteriophages belonging to the family Siphoviridae. Among B. cereus bacteriophages with broad host range, 18 isolates (66.7%) did not harbor any B. cereus virulence factors. Among them, bacteriophage strain CAU150036, CAU150038, CAU150058, CAU150064, CAU150065, and CAU150066 effectively inhibited B. cereus in vitro within 1 h. Therefore, they are considered potential candidates for controlling the contamination of B. cereus in food or other applications.

Keywords

Bacteriophages Bacillus cereus Isolation Characterization Virulence factor Inhibition 

Notes

Acknowledgements

This study was supported by the National Institute of Animal Science Rural Development Administration (Project No. 20130058), Republic of Korea and the Korea Institute of Planning and Evaluation for Technology in Food, Agriculture, Forestry and Fisheries (IPET) through (High Value-added Food Technology Development Program), funded by the Ministry of Agriculture, Food and Rural Affairs (MAFRA) (313023-3).

Compliance with Ethical Standards

Conflict of interest

Authors declare that there is no conflict of interest.

Supplementary material

12560_2017_9284_MOESM1_ESM.docx (38 kb)
Supplementary material 1 (DOCX 38 kb)

References

  1. Alouf, J. E. (2000). Bacterial protein toxins. Bacterial toxins: Methods and protocols (pp. 1–26). Totowa, New Jersey: Springer.Google Scholar
  2. Bandara, N., Jo, J., Ryu, S., & Kim, K.-P. (2012). Bacteriophages BCP1-1 and BCP8-2 require divalent cations for efficient control of Bacillus cereus in fermented foods. Food Microbiology, 31(1), 9–16.CrossRefPubMedGoogle Scholar
  3. Beecher, D. J., & MacMillan, J. D. (1990). A novel bicomponent hemolysin from Bacillus cereus. Infection and Immunity, 58(7), 2220–2227.PubMedPubMedCentralGoogle Scholar
  4. Bottone, E. J. (2010). Bacillus cereus, a volatile human pathogen. Clinical Microbiology Reviews, 23(2), 382–398.CrossRefPubMedPubMedCentralGoogle Scholar
  5. Canchaya, C., Fournous, G., Chibani-Chennoufi, S., Dillmann, M.-L., & Brüssow, H. (2003). Phage as agents of lateral gene transfer. Current Opinion in Microbiology, 6(4), 417–424.CrossRefPubMedGoogle Scholar
  6. Cheetham, B. F., & Katz, M. E. (1995). A role for bacteriophages in the evolution and transfer of bacterial virulence determinants. Molecular Microbiology, 18(2), 201–208.CrossRefPubMedGoogle Scholar
  7. Choudhary, R., Bandla, S., Watson, D. G., Haddock, J., Abughazaleh, A., & Bhattacharya, B. (2011). Performance of coiled tube ultraviolet reactors to inactivate Escherichia coli W1485 and Bacillus cereus endospores in raw cow milk and commercially processed skimmed cow milk. Journal of Food Engineering, 107(1), 14–20.CrossRefGoogle Scholar
  8. El-Arabi, T. F., Griffiths, M. W., She, Y.-M., Villegas, A., Lingohr, E. J., & Kropinski, A. M. (2013). Genome sequence and analysis of a broad-host range lytic bacteriophage that infects the Bacillus cereus group. Virology Journal, 10(48), 10–48.Google Scholar
  9. Garcia, P., Martinez, B., Obeso, J., & Rodriguez, A. (2008). Bacteriophages and their application in food safety. Letters in Applied Microbiology, 47(6), 479–485.CrossRefPubMedGoogle Scholar
  10. Ghelardi, E., Celandroni, F., Salvetti, S., Barsotti, C., Baggiani, A., & Senesi, S. (2002). Identification and characterization of toxigenic Bacillus cereus isolates responsible for two food-poisoning outbreaks. FEMS Microbiology Letters, 208(1), 129–134.CrossRefPubMedGoogle Scholar
  11. Granum, P. E., & Lund, T. (1997). Bacillus cereus and its food poisoning toxins. FEMS Microbiology Letters, 157(2), 223–228.CrossRefPubMedGoogle Scholar
  12. Guinebretière, M.-H., & Broussolle, V. (2002). Enterotoxigenic profiles of food-poisoning and food-borne Bacillus cereus strains. Journal of Clinical Microbiology, 40(8), 3053–3056.CrossRefPubMedPubMedCentralGoogle Scholar
  13. Hagens, S., & Loessner, M. J. (2007). Application of bacteriophages for detection and control of foodborne pathogens. Applied Microbiology and Biotechnology, 76(3), 513–519.CrossRefPubMedGoogle Scholar
  14. Jang, J.-H., Lee, N.-A., Woo, G.-J., & Park, J.-H. (2006). Prevalence of Bacillus cereus group in rice and distribution of enterotoxin genes. Food Science and Biotechnology, 15(2), 232–237.Google Scholar
  15. Jones, D., & Sneath, P. (1970). Genetic transfer and bacterial taxonomy. Bacteriological Reviews, 34(1), 40.PubMedPubMedCentralGoogle Scholar
  16. Kanamaru, S., Leiman, P. G., Kostyuchenko, V. A., Chipman, P. R., Mesyanzhinov, V. V., Arisaka, F., et al. (2002). Structure of the cell-puncturing device of bacteriophage T4. Nature, 415(6871), 553–557.CrossRefPubMedGoogle Scholar
  17. Kim, C. W., Cho, S. H., Kang, S. H., Park, Y. B., Yoon, M. H., Lee, J. B., et al. (2015). Prevalence, genetic diversity, and antibiotic resistance of Bacillus cereus isolated from Korean fermented soybean products. Journal of Food Science, 80(1), M123–M128.CrossRefPubMedGoogle Scholar
  18. Kim, C., Hung, Y. C., & Brackett, R. E. (2000). Efficacy of electrolyzed oxidizing (EO) and chemically modified water on different types of foodborne pathogens. International Journal of Food Microbiology, 61(2), 199–207.CrossRefPubMedGoogle Scholar
  19. Kim, J. B., Kim, J. M., Cho, S. H., Oh, H. S., Choi, N. J., & Oh, D. H. (2011). Toxin genes profiles and toxin production ability of Bacillus cereus isolated from clinical and food samples. Journal of Food Science, 76(1), T25–T29.CrossRefPubMedGoogle Scholar
  20. Kim, S. K., Kim, K. P., Jang, S. S., Shin, E. M., Kim, M. J., Oh, S., et al. (2009). Prevalence and toxigenic profiles of Bacillus cereus isolated from dried red peppers, rice, and Sunsik in Korea. Journal of Food Protection, 72(3), 578–582.CrossRefPubMedGoogle Scholar
  21. Kim, M.-G., Oh, M.-H., Lee, G.-Y., Hwang, I.-G., Kwak, H.-S., Kang, Y.-S., et al. (2008). Analysis of major foodborne pathogens in various foods in Korea. Food Science and Biotechnology, 17(3), 483–488.Google Scholar
  22. King, N. J., Whyte, R., & Hudson, J. A. (2007). Presence and significance of Bacillus cereus in dehydrated potato products. Journal of Food Protection, 70(2), 514–520.CrossRefPubMedGoogle Scholar
  23. Lee, W. J., Billington, C., Hudson, J., & Heinemann, J. (2011). Isolation and characterization of phages infecting Bacillus cereus. Letters in Applied Microbiology, 52(5), 456–464.CrossRefPubMedGoogle Scholar
  24. Lee, J.-H., Shin, H., Son, B., Heu, S., & Ryu, S. (2013). Characterization and complete genome sequence of a virulent bacteriophage B4 infecting food-borne pathogenic Bacillus cereus. Archives of Virology, 158(10), 2101–2108.CrossRefPubMedGoogle Scholar
  25. Leverentz, B., Conway, W. S., Alavidze, Z., Janisiewicz, W. J., Fuchs, Y., Camp, M. J., et al. (2001). Examination of bacteriophage as a biocontrol method for Salmonella on fresh-cut fruit: a model study. Journal of Food Protection, 64(8), 1116–1121.CrossRefPubMedGoogle Scholar
  26. Minnaard, J., Delfederico, L., Vasseur, V., Hollmann, A., Rolny, I., Semorile, L., et al. (2007). Virulence of Bacillus cereus: A multivariate analysis. International Journal of Food Microbiology, 116(2), 197–206.CrossRefPubMedGoogle Scholar
  27. Mirold, S., Rabsch, W., Tschäpe, H., & Hardt, W.-D. (2001). Transfer of the Salmonella type III effector sopE between unrelated phage families. Journal of Molecular Biology, 312(1), 7–16.CrossRefPubMedGoogle Scholar
  28. Molineux, I. J. (2001). No syringes please, ejection of phage T7 DNA from the virion is enzyme driven. Molecular Microbiology, 40(1), 1–8.CrossRefPubMedGoogle Scholar
  29. Oms-Oliu, G., Martín-Belloso, O., & Soliva-Fortuny, R. (2010). Pulsed light treatments for food preservation. A review. Food and Bioprocess Technology, 3(1), 13–23.CrossRefGoogle Scholar
  30. Rice, E. W., Adcock, N. J., Sivaganesan, M., & Rose, L. J. (2005). Inactivation of spores of Bacillus anthracis Sterne, Bacillus cereus, and Bacillus thuringiensis subsp. israelensis by chlorination. Applied and Environmental Microbiology, 71(9), 5587–5589.CrossRefPubMedPubMedCentralGoogle Scholar
  31. Sabour, P. M., & Griffiths, M. W. (2010). Bacteriophages in the control of food-and waterborne pathogens. Washington, DC: American Society for Microbiology Press.Google Scholar
  32. Sergeev, N., Distler, M., Vargas, M., Chizhikov, V., Herold, K. E., & Rasooly, A. (2006). Microarray analysis of Bacillus cereus group virulence factors. Journal of Microbiological Methods, 65(3), 488–502.CrossRefPubMedGoogle Scholar
  33. Shin, H., Bandara, N., Shin, E., Ryu, S., & Kim, K.-P. (2011). Prevalence of Bacillus cereus bacteriophages in fermented foods and characterization of phage JBP901. Research in Microbiology, 162(8), 791–797.CrossRefPubMedGoogle Scholar
  34. Shin, H., Lee, J.-H., Park, J., Heu, S., & Ryu, S. (2014). Characterization and genome analysis of the Bacillus cereus-infecting bacteriophages BPS10C and BPS13. Archives of Virology, 159(8), 2171–2175.CrossRefPubMedGoogle Scholar
  35. Smeesters, P. R., Drèze, P. A., Bousbata, S., Parikka, K. J., Timmery, S., Hu, X., et al. (2011). Characterization of a novel temperate phage originating from a cereulide-producing Bacillus cereus strain. Research in Microbiology, 162(4), 446–459.CrossRefPubMedGoogle Scholar
  36. Stark, C. J., Bonocora, R. P., Hoopes, J. T., & Nelson, D. C. (2010). Bacteriophage lytic enzymes as antimicrobials. Bacteriophages in the Control of Food-and Waterborne Pathogens (pp. 137–156). Washington, DC: American Society of Microbiology.CrossRefGoogle Scholar
  37. Strauch, E., Hammerl, J., & Hertwig, S. (2007). Bacteriophages: New tools for safer food? Journal für Verbraucherschutz und Lebensmittelsicherheit, 2(2), 138–143.CrossRefGoogle Scholar
  38. Sulakvelidze, A. (2013). Using lytic bacteriophages to eliminate or significantly reduce contamination of food by foodborne bacterial pathogens. Journal of the Science of Food and Agriculture, 93(13), 3137–3146.CrossRefPubMedGoogle Scholar
  39. Todd, E. C. (1989). Preliminary estimates of costs of foodborne disease in the United States. Journal of Food Protection, 52(8), 595–601.CrossRefGoogle Scholar
  40. Van Opstal, I., Bagamboula, C. F., Vanmuysen, S. C., Wuytack, E. Y., & Michiels, C. W. (2004). Inactivation of Bacillus cereus spores in milk by mild pressure and heat treatments. International Journal of Food Microbiology, 92(2), 227–234.CrossRefPubMedGoogle Scholar
  41. Wommack, K. E., Williamson, K. E., Helton, R. R., Bench, S. R., & Winget, D. M. (2009). Methods for the isolation of viruses from environmental samples. Bacteriophages (Vol. 1, pp. 3–14)., Isolation, characterization, and interactions New York: Humana Press.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.Department of Food and Nutrition, College of Biotechnology and Agriculture ResourceChung-Ang UniversityAnseongRepublic of Korea
  2. 2.Department of Food Science and Technology, College of Biotechnology and Agriculture ResourceChung-Ang UniversityAnseongRepublic of Korea
  3. 3.National Institute of Animal ScienceRural Development AdministrationJeonjuRepublic of Korea

Personalised recommendations