Food and Environmental Virology

, Volume 6, Issue 4, pp 282–289 | Cite as

Antiviral Effects of Lactococcus lactis on Feline Calicivirus, A Human Norovirus Surrogate

  • Hamada A. Aboubakr
  • Amr A. El-Banna
  • Mohammed M. Youssef
  • Sobhy A. A. Al-Sohaimy
  • Sagar M. Goyal
Original Paper

Abstract

Foodborne viruses, particularly human norovirus (NV) and hepatitis virus type A, are a cause of concern for public health making it necessary to explore novel and effective techniques for prevention of foodborne viral contamination, especially in minimally processed and ready-to-eat foods. This study aimed to determine the antiviral activity of a probiotic lactic acid bacterium (LAB) against feline calicivirus (FCV), a surrogate of human NV. Bacterial growth medium filtrate (BGMF) of Lactococcus lactis subsp. lactis LM0230 and its bacterial cell suspension (BCS) were evaluated separately for their antiviral activity against FCV grown in Crandell–Reese feline kidney (CRFK) cells. No significant antiviral effect was seen when CRFK cells were pre-treated with either BGMF (raw or pH 7-adjusted BGMF) or BCS. However, pre-treatment of FCV with BGMF and BCS resulted in a reduction in virus titers of 1.3 log10 tissue culture infectious dose (TCID)50 and 1.8 log10 TCID50, respectively. The highest reductions in FCV infectivity were obtained when CRFK cells were co-treated with FCV and pH 7-adjusted BGMF or with FCV and BCS (7.5 log10 TCID50 and 6.0 log10 TCID50, respectively). These preliminary results are encouraging and indicate the need for continued studies on the role of probiotics and LAB on inactivation of viruses in various types of foods.

Keywords

Norovirus Feline calicivirus Lactic acid bacteria Probiotics Antiviral activity Lactococcus lactis Foodborne viruses 

References

  1. Åkerberg, C., Hofvendahl, K., Zacchi, G., & Hahn-Hägerdal, B. (1998). Modelling the influence of pH, temperature, glucose and lactic acid concentrations on the kinetics of lactic acid production by Lactococcus lactis ssp. lactis ATCC 19435 in whole-wheat flour. Applied Microbiology and Biotechnology, 49, 682–690.CrossRefGoogle Scholar
  2. Akkoç, N., Ghamat, A., & Akçelik, M. (2011). Optimization of bacteriocin production of Lactococcus lactis subsp. lactis MA23, a strain isolated from Boza. International Journal of Dairy Technology, 64, 425–432.CrossRefGoogle Scholar
  3. Al Askari, G., Kahouadji, A., Khedid, K., Charof, R., & Mennane, Z. (2012). Screenings of lactic acid bacteria isolated from dried fruits and study of their antibacterial activity. Middle-East Journal of Scientific Research, 11, 209–215.Google Scholar
  4. Anonymous. (2012). The European Union summary report on trends and sources of zoonoses, zoonotic agents and food-borne outbreaks in the European Union in 2010. EFSA Journal, 10(3):2597. doi:10.2903/j.efsa.2012.2597.
  5. Baert, L., Debevere, J., & Uyttendaele, M. (2009). The efficacy of preservation methods to inactivate foodborne viruses. International Journal of Food Microbiology, 131, 83–94.PubMedCrossRefGoogle Scholar
  6. Bidawid, S., Farber, J. M., & Sattar, S. A. (2000). Contamination of foods by food handlers: Experiments on hepatitis A virus transfer to food and its interruption. Applied and Environmental Microbiology, 66, 2759–2763.PubMedCentralPubMedCrossRefGoogle Scholar
  7. Botić, T., Klingberg, T. D., Weingartl, H., & Cencič, A. (2007). A novel eukaryotic cell culture model to study antiviral activity of potential probiotic bacteria. International Journal of Food Microbiology, 115, 227–234.PubMedCrossRefGoogle Scholar
  8. Butot, S., Putallaz, T., & Sanchez, G. (2008). Effects of sanitation, freezing and frozen storage on enteric viruses in berries and herbs. International Journal of Food Microbiology, 126, 30–35.PubMedCrossRefGoogle Scholar
  9. Carlson, S. J., Pavlova, S. I., Spear, G. T., Anzinger, J. J., & Tao, L. (2004). Lactobacillus lectin as a natural HIV trap. [abstract 2280]. In IADR/AADR/CADR 82nd General Session, Honolulu, Hawaii. https://iadr.confex.com/iadr/2004Hawaii/techprogram/abstract_47196.htm.
  10. Chang, R., Pavlova, S., Caffrey, M., Spear, G., Tanzer, J., Thompson, A., & Tao, L. (2009). Blocking milk-borne HIV transmission by virus-capturing Lactobacilli. In The Mouth and AIDS: The Global Challenge 6th World Workshop on Oral Health and Disease, Beijing. http://www.hivdent.org/6thWWOHDA/6WWOHDA_BMBHTV.htm.
  11. Choi, H.-J., Cheigh, C.-I., Kim, S.-B., & Pyun, Y.-R. (2000). Production of a nisin-like bacteriocin by Lactococcus lactis subsp. lactis A164 isolated from Kimchi. Journal of Applied Microbiology, 88, 563–571.PubMedCrossRefGoogle Scholar
  12. Cizeikiene, D., Juodeikiene, G., Paskevicius, A., & Bartkiene, A. (2013). Antimicrobial activity of lactic acid bacteria against pathogenic and spoilage microorganism isolated from food and their control in wheat bread. Food Control, 31, 539–545.CrossRefGoogle Scholar
  13. Courtin, P., Miranda, G., Guillot, A., Wessner, F., Mézange, C., Domakova, E., et al. (2006). Peptidoglycan structure analysis of Lactococcus lactis reveals the presence of an l,d-carboxypeptidase involved in peptidoglycan maturation. Journal of Bacteriology, 188, 5293–5298.PubMedCentralPubMedCrossRefGoogle Scholar
  14. D’Souza, D. H., Sair, A., Williams, K., Papafragkou, E., Jean, J., Moore, C., et al. (2006). Persistence of caliciviruses on environmental surfaces and their transfer to food. International Journal of Food Microbiology, 108, 84–91.PubMedCrossRefGoogle Scholar
  15. Dalié, D. K. D., Deschamps, V., & Richard-Forget, F. (2010). Lactic acid bacteria—Potential for control of mould growth and mycotoxins: A review. Food Control, 21, 370–380.CrossRefGoogle Scholar
  16. Ermolenko, E. I., Furaeva, V. A., Isakov, V. A., Ermolenko, D. K., & Suvorov, A. N. (2010). Inhibition of herpes simplex virus type 1 reproduction by probiotic bacteria in vitro. Voprosy Virusologii, 55, 25–28.PubMedGoogle Scholar
  17. European Food Safety Authority. (2009). The community summary report on foodborne outbreaks in the European Union in 2007. EFSA Journal 271. http://www.efsa.europa.eu/EFSA/efsa_locale1178620753812_1211902515341.htm.
  18. FAO/WHO. (2008). Microbiological hazards in fresh leafy vegetables and herbs: Meeting Report. Microbiological Risk Assessment Series No. 14. Rome. http://www.who.int/foodsafety/publications/micro/Viruses_in_food_MRA.pdf.
  19. FDA. (2012). GRAS notification for the use of lactic acid bacteria to control pathogenic bacteria in meat and poultry products. http://www.accessdata.fda.gov/scripts/fcn/gras_notices/GRN000463.pdf.
  20. Grufferty, R. C., & Condon, S. (1983). Effect of fermentation sugar on hydrogen peroxide accumulation by Streptococcus lactis C10. Journal of Dairy Research, 50, 481–489.CrossRefGoogle Scholar
  21. Guix, S., Asanaka, M., Katayama, K., Crawford, S. E., Neill, F. H., Atmar, R. L., et al. (2007). Norwalk virus RNA is infectious in mammalian cells. Journal of Virology, 81, 12238–12248.PubMedCentralPubMedCrossRefGoogle Scholar
  22. Heoa, W. S., Kima, Y. R., Kima, E. Y., Baib, S. C., & Kong, I. S. (2013). Effects of dietary probiotic, Lactococcus lactis subsp. lactis I2, supplementation on the growth and immune response of olive flounder (Paralichthys olivaceus). Aquaculture, 376–379, 20–24.CrossRefGoogle Scholar
  23. Hirneisen, K. A., Black, E. P., Cascarino, J. L., Fino, V. R., Hoover, D. G., & Kniel, K. E. (2010). Viral inactivation in foods: A review of traditional and novel food-processing technologies. Comprehensive Reviews in Food Science and Food Safety, 9, 3–20.CrossRefGoogle Scholar
  24. Karber, G. (1931). 50% End point calculation. Archiv fur Experimentelle Pathologies und Pharmakologie, 162, 480–483.CrossRefGoogle Scholar
  25. Khani, S., Motamedifar, M., Golmoghaddamb, H., Hosseini, H. M., & Hashemizadeh, Z. (2012). In vitro study of the effect of a probiotic bacterium Lactobacillus rhamnosus against herpes simplex virus type 1. Brazilian Journal of Infectious Diseases, 16, 129–135.PubMedCrossRefGoogle Scholar
  26. Kobayashi, N., Saito, T., Uematsu, T., Kishi, K., Toba, M., Kohda, N., et al. (2011). Oral administration of heat-killed Lactobacillus pentosus strain b240 augments protection against influenza virus infection in mice. International Immunopharmacology, 11, 199–203.PubMedCrossRefGoogle Scholar
  27. Koo, O. K., Eggleton, M., O’Bryan, C. A., Crandall, P. G., & Ricke, S. C. (2012). Antimicrobial activity of lactic acid bacteria against Listeria monocytogenes on frankfurters formulated with and without lactate/diacetate. Meat Science, 92, 533–537.PubMedCrossRefGoogle Scholar
  28. Koopmans, M., & Duizer, E. (2004). Foodborne viruses: An emerging problem. International Journal of Food Microbiology, 90, 23–41.PubMedCrossRefGoogle Scholar
  29. Lee, Y., Youn, H., Kwon, J., Lee, D., Park, J., Yuk, S., et al. (2013). Sublingual administration of Lactobacillus rhamnosus affects respiratory immune responses and facilitates protection against influenza virus infection in mice. Antiviral Research, 98, 284–290.PubMedCrossRefGoogle Scholar
  30. Madigan, M., Martinko, J., Stahl, D., & Clark, D. (2012). Chapter 12. In Brock biology of microorganisms (13th ed.). San Francisco: Benjamin Cummings.Google Scholar
  31. Malik, Y. S., Maherchandani, S., Allwood, P. B., & Goyal, S. M. (2005). Evaluation of animal origin cell cultures for in vitro cultivation of Noroviruses. The Journal of Applied Research in Clinical and Experimental Therapeutics, 5, 312–317.Google Scholar
  32. Maragkoudakis, P. A., Chingwaru, W., Gradisnik, L., Tsakalidou, E., & Cencic, A. (2010). Lactic acid bacteria efficiently protect human and animal intestinal epithelial and immune cells from enteric virus infection. International Journal of Food Microbiology, 141, S91–S97.PubMedCrossRefGoogle Scholar
  33. Martín, V., Maldonado, A., Fernández, L., Rodríguez, J., & Connor, R. (2010). Inhibition of human immunodeficiency virus type 1 by lactic acid bacteria from human breastmilk. Breastfeeding Medicine, 5, 153–158.PubMedCentralPubMedCrossRefGoogle Scholar
  34. Mormann, S., Dabisch-Ruthe, M., & Becker, B. (2010). Inactivation of norovirus in foods. Inoculation study using human norovirus. Fleischwirtschaft, 90, 116–121.Google Scholar
  35. Orhan, D. D., Ozcelik, B., Ozgen, S., & Ergun, F. (2010). Antibacterial, antifungal, and antiviral activities of some flavonoids. Microbiological Research, 165, 496–504.PubMedCrossRefGoogle Scholar
  36. Roberts, C., & Antonoplos, P. (1998). Inactivation of human immunodeficiency virus type 1, hepatitis A virus, respiratory syncytial virus, accinia virus, herpes simplex virus type 1, and poliovirus type 2 by hydrogen peroxide gas plasma sterilization. American Journal of Infection Control, 26, 94–101.PubMedCrossRefGoogle Scholar
  37. Rodger, S. M., Schnagl, R. D., & Holmes, I. H. (1977). Further biochemical characterization, including the detection of surface glycoproteins, of human, calf, and simian rotaviruses. Journal of Virology, 24, 91–98.PubMedCentralPubMedGoogle Scholar
  38. Saeed, S., Rasool, S. A., Ahmed, S., Zaidi, A. Z., & Rehmani, S. (2007). Antiviral activity of staphylococcin 188: A purified bacteriocin like inhibitory substance isolated from Staphylococcus aureus AB188. Research Journal of Microbiology, 2, 796–806.CrossRefGoogle Scholar
  39. Samaržija, D., Antunac, N., & Havranek, J. L. (2001). Taxonomy, physiology and growth of Lactococcus lactis: A review. Mljekarstvo, 51, 35–48.Google Scholar
  40. Scharff, R. L. (2010). Health-related costs from foodborne illness in the United States. http://www.pewhealth.org/uploadedFiles/PHG/Content_Level_Pages/Reports/PSP-Scharff%20v9.pdf.
  41. Scharff, R. L. (2012). Economic burden from health losses due to foodborne illness in the United States. Journal of Food Protection, 75, 123–131.PubMedCrossRefGoogle Scholar
  42. Schwenninger, S. M., Meile, L., & Lacroix, C. (2011). Antifungal lactic acid bacteria and propionibacteria for food biopreservation. In C. Lacroix (Ed.), Protective cultures, antimicrobial metabolites and bacteriophages for food and beverage biopreservation (pp. 27–62). Philadelphia: Woodhead Publishing Limited.CrossRefGoogle Scholar
  43. Straub, T. M., Honerzu, B. K., Orosz-Coghlan, P., Dohnalkova, A., Mayer, B. K., Bartholomew, R. A., et al. (2007). In vitro cell culture infectivity assay for human noroviruses. Emerging Infectious Diseases Journal, 13, 396–403.CrossRefGoogle Scholar
  44. Straube, J., Albert, T., Manteufel, J., Heinze, J., Fehlhaber, K., & Truyen, U. (2011). In vitro influence of d/l-lactic acid, sodium chloride and sodium nitrite on the infectivity of feline calicivirus and of ECHO virus as potential surrogates for foodborne viruses. International Journal of Food Microbiology, 151, 93–97.PubMedCrossRefGoogle Scholar
  45. Todorov, S. D., Wachsman, M. B., Knoetze, H., Meincken, M., & Dicks, L. M. T. (2005). An antibacterial and antiviral peptide produced by Enterococcus mundtii ST4V isolated from soya beans. International Journal of Antimicrobial Agents, 25, 508–513.PubMedCrossRefGoogle Scholar
  46. Torres, N. I., Noll, K. S., Xu, S., Li, J., Huang, Q., Sinko, P. J., et al. (2013). Safety, Formulation and in vitro antiviral activity of the antimicrobial peptide subtilosin against Herpes Simplex Virus Type 1. Probiotics and Antimicrobial Proteins, 5, 26–35.PubMedCentralPubMedCrossRefGoogle Scholar
  47. Van Niel, E. W. J., Hofvendahl, K., & Hahn-Hägerdal, B. (2002). Formation and conversion of oxygen metabolites by Lactococcus lactis subsp. lactis ATCC 19435 under different growth conditions. Applied and Environmental Microbiology, 68, 4350–4356.PubMedCentralPubMedCrossRefGoogle Scholar
  48. Wachsman, M. B., Farías, M. E., Takeda, E., Sesma, F., Holgado, A. P., Torres, R. A., et al. (2003). Enterocin CRL35 inhibits late stages of HSV-1 and HSV-2 replication in vitro. Antiviral Research, 58, 17–24.PubMedCrossRefGoogle Scholar
  49. Youn, H., Lee, D., Lee, Y., Park, J., Yuk, S., Yang, S., et al. (2012). Intranasal administration of live Lactobacillus species facilitates protection against influenza virus infection in mice. Antiviral Research, 93, 138–143.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Hamada A. Aboubakr
    • 1
    • 2
    • 3
  • Amr A. El-Banna
    • 3
  • Mohammed M. Youssef
    • 3
  • Sobhy A. A. Al-Sohaimy
    • 4
  • Sagar M. Goyal
    • 1
    • 2
  1. 1.Department of Veterinary Population Medicine, College of Veterinary MedicineUniversity of MinnesotaSt. PaulUSA
  2. 2.Veterinary Diagnostic Laboratory, College of Veterinary MedicineUniversity of MinnesotaSt. PaulUSA
  3. 3.Food Science and Technology Department, Faculty of AgricultureAlexandria UniversityAlexandriaEgypt
  4. 4.Department of Food Biotechnology, Arid Land Cultivation and Development InstituteCity of Scientific Research and Technology ApplicationsAlexandriaEgypt

Personalised recommendations