Food and Environmental Virology

, Volume 4, Issue 4, pp 168–178

Effect of pH on Anti-Rotavirus Activity by Comestible Juices and Proanthocyanidins in a Cell-Free Assay System

  • Steven M. Lipson
  • Fatma S. Ozen
  • Laina Karthikeyan
  • Ronald E. Gordon
Original Paper

Abstract

Cranberry (Vaccinium macrocarpon) and grape (Vitis labrusca) juices, and these species’ secondary plant metabolites [i.e., proanthocyanidins (PACs)] possess antiviral activity. An understanding of the mechanism(s) responsible for these juices and their polyphenolic constituents’ direct effect on enteric virus integrity, however, remains poorly defined. Using the rotavirus (RTV) as a model enteric virus system, the direct effect of manufacturer-supplied and commercially purchased juices [Ocean Spray Pure Cranberry 100 % Unsweetened Juice (CJ), Welch’s 100 % Grape Juice (GJ), 100 % Concord (PG) and 100 % Niagara juices (NG)] and these species’ cranberry (C-PACs) and grape PACs (G-PACs) was investigated. Loss of viral capsid integrity in cell-free suspension by juices and their PACs, and as a factor of pH, was identified by an antigen (RTV) capture enzyme-linked immunosorbent assay. At native and an artificially increased suspension at or near pH 7, loss of viral infectivity occurred after 5 min, in the order CJ > NG = GJ > PG, and PG > GJ = NG = CJ, respectively. Antiviral activity of CJ was inversely related to pH. Grape, but not cranberry PACs, displayed a comparatively greater anti-RTV activity at a suspension pH of 6.7. Anti-RTV activity of C-PACs was regained upon reduction of RTV-cranberry PAC suspensions to pH 4. An alteration or modification of Type A PAC (of V. macrocarpon) structural integrity at or near physiologic pH is suggested to have impacted on this molecule’s antivirus activity. Type B PACs (of V. labrusca) were refractive to alternations of pH. Significantly, findings from pure system RTV–PAC testing paralleled and in turn, supported those RTV-juice antiviral studies. Electron microscopy showed an enshroudment by PACs of RTV particles, suggesting a blockage of viral antigenic binding determinants. The implications of our work are significant, especially in the interpretation of PAC (and PAC-containing food)–RTV interactions in the differing [pH] conditions of the gastrointestinal tract.

Keywords

Rotavirus antigen Juices Proanthocyanidins pH 

References

  1. Alberts, B., Johnson, A., Lewis, J., Raff, M., Roberts, K., & Walter, P. (2008). Biology of the cell (p. 360). New York: Garland Science, Taylor & Francis Group.Google Scholar
  2. Anderson, A. C., Pollastri, M. P., Schiffer, C. A., & Peet, N. P. (2011). The challenge of developing robust drugs to overcome resistance. Drug Discovery Today, 16, 755–761.PubMedGoogle Scholar
  3. Atmar, R. L., Opekun, A. R., Gilger, M. A., Estes, M. K., Crawford, S. E., Neill, F. H., et al. (2008). Norwalk virus shedding after experimental human infection. Emerging Infectious Diseases, 14, 1553–1557.PubMedCrossRefGoogle Scholar
  4. Bae, E.-A., Han, M. J., Lee, M., & Kim, D.-H. (2000). In vitro inhibitory effect of some flavonoids on rotavirus infectivity. Biological and Pharmaceutical Bulletin, 23, 1122–1124.PubMedCrossRefGoogle Scholar
  5. Bagga, S., Seth, D., & Batra, J. K. (2002). The cytotoxic activity of ribosome-inactivating protein saporin-6 is attributed to its rRNA N-glycosidase and internucleosomal DNA fragmentation activities. Journal of Biological Chemistry, 278, 4813–4820.PubMedCrossRefGoogle Scholar
  6. Battelli, M. G. (2004). Cytotoxicity and toxicity to animal and human of ribosome-inactivating proteins. Mini Reviews in Medical Chemistry, 4, 513–521.CrossRefGoogle Scholar
  7. Bauer, D. J. (1985). A history of the discovery and clinical application of antiviral drugs. British Medical Bulletin, 41, 309–314.PubMedGoogle Scholar
  8. Bosse, R., Hyka, X., Sullivan, G. L., Ozen, F. S., Gordon, R. S., Karthikeyan, L., & Lipson, S. M. (2012). Effect of flavonoids on the loss of rotavirus infectivity using a quantitative cell-free assay system. Abstracts of oral presentations, session 2, 10:20 a.m., April 1st. Boston: New England Science Symposium The Harvard Medical School.Google Scholar
  9. Brassard, J., Guevremont, E., Gagne, M. J., & LaMoureux, L. (2011). Simultaneous recovery of bacteria and viruses from contaminated water and spinach by a filtration methods. International Journal of Food Microbiology, 144, 565–568.PubMedCrossRefGoogle Scholar
  10. Bucher, A., Rivera, G., Briceno, D., & Huicho, L. (2012). Use of a rapid rotavirus test in prescription of antibiotics in acute diarrhea in pediatrics: an observational randomized, controlled study. Reviews in Gastroenterology, 32, 11–15.Google Scholar
  11. Butot, S., Putallaz, T., & Sanchez, G. (2008). Effects of sanitation, freezing and frozen storage on enteric viruses in berries and herbs. International Journal of Food Microbiology, 126, 30–35.PubMedCrossRefGoogle Scholar
  12. Carter, J., & Saunders, V. (2007). Virology—principles and applications (pp. 22–24). Hoboken: John Wiley.Google Scholar
  13. Chattopadhyay, D., & Naik, T. N. (2007). Antivirals of ethnomedicinal origin: structure-activity relationship and scope. Mini Reviews in Medicinal Chemistry, 7, 275–301.PubMedCrossRefGoogle Scholar
  14. Chege, G. K., Steele, S. D., Hart, C. A., Snodgrass, D. R., Omolo, E. O., & Mwenda, J. M. (2005). Experimental infection of non-human primates with a human rotavirus isolate. Vaccine, 23, 1522–1528.PubMedCrossRefGoogle Scholar
  15. Chiou, J. C., Li, X. P., Remacha, M., Ballesta, J. P., & Tumer, N. E. (2011). Shiga toxin 1 is more dependent on the P proteins of the ribosomal stalk for depurination activity than Shiga toxin 2. International Journal Biochemical Cell Biology, 43, 1792–1801.CrossRefGoogle Scholar
  16. Cliver, D. O. (2009). Capsid and infectivity in virus detection. Food and Environmental Virology, 1, 123–128.PubMedCrossRefGoogle Scholar
  17. Coila, B. (2012). Nutrition information for lettuce. Livestrong.comSM. http://www.livestrong.com/article/273230-nutrition-information-for-lettuce/.
  18. Cukor, G., & Blacklow, N. R. (1981). Human viral gastroenteritis. Microbiological Reviews, 48, 157–179.Google Scholar
  19. Czerny, C.-P., Meyer, H., & Mahnel, H. (1989). Establishment of an ELISA for the detection of orthopox viruses based on neutralizing monoclonal and polyclonal antibodies. Journal of Veterinary Medicine Series B, 36, 537–546.PubMedCrossRefGoogle Scholar
  20. De Clercq, E. (2010). In search of a selective therapy of viral infections. Antiviral Research, 85, 19–24.PubMedCrossRefGoogle Scholar
  21. Dussart, P., Petit, L., Labeau, B., Bremand, L., Leduc, A., Moua, D., et al. (2008). Evaluation of two new commercial tests for the diagnosis of acute dengue virus infection using NS1 antigen detection in human serum. PLoS Neglected Tropical Diseases, 9, e280. doi:1371/journal.pntd.0000280.CrossRefGoogle Scholar
  22. Escudero, B. I., Rawsthorne, H., Gensel, C., & Jaykus, L. A. (2012). Persistence and transferability or noroviruses on and between common surfaces and foods. Journal of Food Protection, 75, 927–935.PubMedCrossRefGoogle Scholar
  23. Estes, M. K., Mason, B., & Cohen, J. (1984). Cloning and nucleotide sequence of the simian rotavirus gene 6 that codes for the major inner capsid protein. Nucleic Acids Research, 12, 875–1887.CrossRefGoogle Scholar
  24. Fang, S. B., Lee, H. C., Hu, J. J., Hou, S. Y., Liu, H. L., & Fang, H. W. (2009). Dose-dependent effect of Lactobacillus rhamnosus on quantitative reduction of faecal rotavirus shedding in children. Journal of Tropical Pediatrics, 55, 297–301.PubMedCrossRefGoogle Scholar
  25. Fine, A. M. (2000). Oligomeric proanthocyanidin complexes: History, structure, and pharmaceutical applications. Alternative Medicine Review, 5, 144–151.PubMedGoogle Scholar
  26. Foo, L. Y., Lu, Y., Howell, A. B., & Vorsa, N. (2000). The structure of cranberry proanthocyanidins which inhibit adherence of uropathogenic P-fimbriated Escherichia coli in vitro. Phytochemistry, 54, 173–181.PubMedCrossRefGoogle Scholar
  27. French, C. J., & Towers, G. H. N. (1992). Inhibition of infectivity of potato virus X by flavonoids. Phytochemistry, 31, 3017–3020.CrossRefGoogle Scholar
  28. Gajardo, R., Vende, P., Poncet, D., & Cohen, J. (1997). Two proline residues are essential in the calcium-binding activity of rotavirus VP7 outer capsid protein. Journal of Virology, 71, 2211–2216.PubMedGoogle Scholar
  29. Gaulin, C. D., Ramsay, D., Cardinal, P., & D’Halevyn, M. A. (1999). Epidemic of gastroenteritis of viral origin associated with eating imported raspberries. Canadian Journal of Public Health, 90, 37–40.Google Scholar
  30. Gharras, H. E. (2009). Polyphenols: food sources, properties and applications—a review. International Journal of Food Science and Technology, 44, 2512–2518.CrossRefGoogle Scholar
  31. Goncalves, J. L. S., Lopez, R. C., Oliveira, D. B., Costa, S. S., Mirando, M. M. F. S., Romanos, M. T. V., et al. (2005). In vitro anti-rotavirus activity of some medicinal plants used in Brazil against diarrhea. Journal of Ethnopharmacology, 99, 403–407.PubMedCrossRefGoogle Scholar
  32. Grotto, I., Huerta, M., Balicer, R. D., Halperin, T., Cohen, D., Orr, N., et al. (2004). An outbreak of norovirus gastroenteritis on an Israeli military base. Infection, 32, 339–343.PubMedCrossRefGoogle Scholar
  33. Gyuris, A., Szlavik, L., Minarovits, J., Vasas, A., Molnar, J., & Hohmann, J. (2009). Antiviral activities of extracts of Euphorbia hirta L. against HIV-1, HIV-2 and SIVmac251. In Vivo, 23, 429–432.PubMedGoogle Scholar
  34. Hagerman, A. E., & Butler, L. G. (1981). The specificity of proanthocyanidin-protein interactions. Journal of Biological Chemistry, 256, 4496–4497.Google Scholar
  35. Halter, M., Almeida, J. I., Tona, A., Kole, K. D., Plant, A. L., & Elliot, T. J. (2009). A mechanistically relevant cytotoxicity assay on the detection of cellular GFP. Assay and Drug of Development Technologies, 7, 356–365.CrossRefGoogle Scholar
  36. Haslam, E. (1998). Practical polyphenolics: from structure to molecular recognition and physiologic action. Cambridge: Cambridge University Press.Google Scholar
  37. Howell, A. B., Botto, H., Combescure, C., Blanc-Potard, A.-B., Gausa, L., Matsumoto, T., et al. (2010). Dosage effect on uropathogenic Escherichia coli anti-adhesion activity in urine following consumption of cranberry powder standardized for proanthocyanidin content: a multicentric randomized double blind study. BMC Infectious Diseases, 10, 94. doi:10.1186/1471-2334-10-94.PubMedCrossRefGoogle Scholar
  38. Howell, A. B., Reed, J. D., Krueger, C. G., Winterbottom, R., Cunningham, D. G., & Leahy, M. (2005). A-type cranberry proanthocyanidins and uropathogenic bacterial anti-adhesion activity. Phytochemistry, 66, 2281–2291.PubMedCrossRefGoogle Scholar
  39. Hsu, G. H., Bellamy, A. R., & Yeager, M. (1997). Projection structure of VP6, the rotavirus inner capsid protein, and comparison with bluetongue VP7. Journal of Molecular Biology, 272, 362–368.PubMedCrossRefGoogle Scholar
  40. Hutin, Y. J., Pool, V., Cramer, E. H., Nainan, V., Weth, J., Williams, I. T., et al. (1999). A multisite, foodborne outbreak of hepatitis A. National hepatitis investigation team. New England Journal of Medicine, 340, 595–602.PubMedCrossRefGoogle Scholar
  41. Iwasawa, A., Niwano, Y., Mokudai, T., & Kohno, M. (2009). Antiviral activity of proanthocyanidin against feline calicivirus used as a surrogate for noroviruses, and coxsackievirus used as a representative enteric virus. Biocontrol Science, 14, 107–111.PubMedCrossRefGoogle Scholar
  42. Kaul, T. N., Middleton, E., Jr, & Pearay, L. O. (1985). Antiviral effect of flavonoids on human viruses. Journal of Medical Virology, 15, 71–79.PubMedCrossRefGoogle Scholar
  43. Kelkar, S. D., Bhide, V. S., Ranshing, S. S., & Bedekar, S. S. (2004). Rapid ELISA for the diagnosis of rotavirus. Indian Journal of Medical Research, 119, 60–65.PubMedGoogle Scholar
  44. Kim, S. K., & Karadeniz, F. (2011). Anti-HIV activity of extracts and compounds from marine algae. Advances in Food and Nutrition Research, 64, 255–265.PubMedCrossRefGoogle Scholar
  45. Knowlton, D. R., Spector, D. M., & Ward, R. L. (1991). Development of an improved method for measuring neutralizing antibody to rotavirus. Journal of Virological Methods, 33, 127–134.PubMedCrossRefGoogle Scholar
  46. Law, M., & Wald, N. (1999). Why heart disease mortality is low in France: The time lag explanation. British Medical Journal, 318, 1471–1480.PubMedCrossRefGoogle Scholar
  47. Le Guyader, F. S., Mittelholzer, C., Haugarreau, L., Hedlund, K. O., Alserlund, R., Pommepuy, M., et al. (2004). Detection of noroviruses in raspberries associated with a gastroenteritis outbreak. International Journal of Food Microbiology, 97, 179–186.PubMedCrossRefGoogle Scholar
  48. Li, Z., Baker, M. I., Jiang, W., Estes, M. K., & Prasad, B. (2009). Rotavirus architecture at subnanometer resolution. Journal of Virology, 83, 1754–1766.PubMedCrossRefGoogle Scholar
  49. Li, J., Hu, D.-M., Ding, X.-X., Chen,Y., Pan, Y.-X., Qiu, L.-W., & Che, X.-Y. (2011). Enzyme-linked immunosorbent assay-format tissue culture infectious dose-50 test for titrating dengue virus. PLoS One, 6, e22553 doi:10.1371/journal.pone.0022553.
  50. Ling, Y., Li, Z., Yuan, K., Qu, X., Chen, J., Wang, G., et al. (2004). Small molecules blocking the entry of severe acute respiratory syndrome coronavirus into host cells. Journal of Virology, 78, 11334–11339.CrossRefGoogle Scholar
  51. Lipson, S. M. (2010). Cranberry and grape juices reduce rotavirus infectivity in cell culture, and viral protein capsid integrity in cell-free suspension. First Annual Conference of the American Council for Medically Active Plants. July 20–23, 2010, Cook Campus Center, Rutgers, The State University of New Jersey. New Brunswick: Hosted by ACMAP and the New Use Agricultural and Natural Plant Products Program (NUANPP, Rutgers University).Google Scholar
  52. Lipson, S. M., Cohen, P., Zhou, J., Burdowski, A., & Stotzky, G. (2007a). Cranberry cocktail juice, cranberry concentrates, and proanthocyanidins reduce reovirus infectivity titers in African green monkey kidney epithelial cell cultures. Molecular Nutrition and Food Research, 51, 752–758.PubMedCrossRefGoogle Scholar
  53. Lipson, S. M., Gordon, R. E., Karthikeyan, L., Preet, M., Burdowski, A., Roy, M., et al. (2010). Effect of cranberry and grape juice drinks on enteric virus integrity, infectivity in cell culture, and pathology in the animal model. In M. Qian & A. Rimando (Eds.), American flavor and health benefits of small fruits (pp. 177–195). Chicago: Chemical Society Press.CrossRefGoogle Scholar
  54. Lipson, S. M., Gordon, R. E., Ozen, F. S., Karthikeyan, L., & Stotzky, G. (2011). Effect of cranberry and grape juices on tight junction function and structural integrity among rotavirus-infected money kidney epithelial cell culture monolayers. Food and Environmental Virology, 3, 46–54.Google Scholar
  55. Lipson, S. M., Sethi, L., Cohen, P., Gordon, R. E., Tan, I. P., Burdowski, A., et al. (2007b). Antiviral effects on bacteriophages and rotavirus by cranberry juice. Phytomedicine, 14, 23–30.PubMedCrossRefGoogle Scholar
  56. Lipson, S. M., Svenssen, L., Goodwin, L., Porti, D., Danzi, S., & Pergolizzi, R. (2001). Evaluation of two current generation immunoassay and an improved isolation- based assay for the rapid detection and isolation of rotavirus from stool. Journal of Clinical Virology, 21, 17–27.PubMedCrossRefGoogle Scholar
  57. Lipson, S. M., & Zelinsky-Papez, K. (1989). Comparison of four latex agglutination and three enzyme-linked immunosorbent assays for the detection of rotavirus in fecal specimens. American Journal of Clinical Pathology, 92, 637–642.PubMedGoogle Scholar
  58. Liu, C. C., Chang, H. W., Yang, G., Chiang, J. R., Chow, Y. H., Chang, J. Y., et al. (2011). Development of a quantitative enzyme linked immunosorbent assay for monitoring the Enterovirus 71 vaccine manufacturing process. Journal of Virological Methods, 176, 60–68.PubMedCrossRefGoogle Scholar
  59. Lodish, H., Berk, A., Zipursky, S. L., Matsudaira, P., Baltimore, D., Darnell, J. (2000). Molecular cell biology (4th ed.). Chap. 11. RNA processing, nuclear transport, and post-transcriptional control: Processing of rRNA and tRNA. New York: W. H. Freeman.Google Scholar
  60. Lu, W.-C., Huang, W. T., Kumaran, A., Ho, C.-T., & Hwang, L. S. (2011). Transformation of proanthocyanidin A2 to its isomers under different physiological pH conditions and common cell culture medium. Journal of Agricultural and Food Chemistry, 59, 6214–6220.PubMedCrossRefGoogle Scholar
  61. Mahy, B. W. J. (2009). The dictionary of virology (4th ed., p. 247). New York: Elsevier.Google Scholar
  62. Malhotra, B., Onyilagha, J. C., Bohm, B. A., Towers, G. H. N., James, D., Harborne, J. B., et al. (1996). Inhibition of tomato ringspot virus by flavonoids. Phytochemistry, 43, 127–1271.CrossRefGoogle Scholar
  63. Mukoyama, A., Ushijama, H., Nishimura, S., Koike, H., Toda, M., & Shimamura, T. (1991). Inhibition of rotavirus and enteroviruses infections by tea extracts. Japanese Journal of Medical Science and Biology, 44, 181–186.PubMedGoogle Scholar
  64. Nair, M. P., Kandaswami, C., Mahajan, S. A., Nair, H. N., Chawda, R., Shanahan, T., et al. (2002). Grape seed extract proanthocyanidins down regulate HIV-1 entry coreceptors, CCR2b, CCR3 and CCR5 gene expression by normal peripheral blood mono nuclear cells. Biological Research, 35, 421–431.PubMedCrossRefGoogle Scholar
  65. Nijveldt, R. J., van Nood, E., van Horn, D. E. C., Boelens, P. G., van Norren, K., & van Leewen, P. A. M. (2001). Flavonoids: a review of probable mechanisms of action and potential applications. The American Journal of Clinical Nutrition, 74, 418–425.PubMedGoogle Scholar
  66. Niklasson, B. S., & Gargan, T. P., 2nd. (1985). Enzyme-linked immunoassay for detection of Rift valley fever virus antigen in mosquitoes. American Journal of Tropical Medicine and Hygiene, 34, 400–405.PubMedGoogle Scholar
  67. Ozen, F. S., Lipson, S. M., Trotman, T., Gordon, R. E., Preet, M., & Karthikeyan, L. (2011). Investigations into the mechanism(s) of plant metabolites and comestible juices on the loss of rotavirus infectivity. 111th American Society for Microbiology General Meeting. May 21–24, 2011. Session No. 064, Poster Board No. 822.Google Scholar
  68. Raj, D. G., Rajanathan, T. M. C., Turner, S. C., Senthil, S. C., Ramathilagam, G., & Geetha, G. S. (2007). Detection of peste des petits ruminants virus antigen using immunofiltration and antigen-competition ELISA methods. Veterinary Microbiology, 129, 246–251.PubMedCrossRefGoogle Scholar
  69. Reed, L. J., & Muench, H. (1938). A simple method of estimating fifty percent endpoints. American Journal of Hygiene, 27, 493–497.Google Scholar
  70. Remington, J. S., Klein, J. O., Wilson, C. P., & Baker, D. J. (2006). Infectious diseases of the fetus and newborn infant (p. 637). Philadelphia: Elsevier Saunders.Google Scholar
  71. Ribas-Agust, A., Gratacos-Cubarsi, M., Sarraga, C., Garcia-Regueiro, J. A., & Castellari, M. (2011). Analysis of eleven phenolic compounds including novel p-coumaroyl derivatives in lettuce (Lactuca sativa L.) by ultra-high-performance liquid chromatography with photodiode array and mass spectrometry detection. Phytochemical Analysis, 22, 555–563.CrossRefGoogle Scholar
  72. Rodríguez-Lázaro, D., Cook, N., Ruggeri, F. M., Sellwood, J., Nasser, A., Nascimento, M. S., et al. (2011). Virus hazards from food, water and other contaminated environments. FEMS Microbiology Reviews,. doi:10.1111/j.1574-6976.2011.00306.x.PubMedGoogle Scholar
  73. Roh, C., & Jo, S.-K. (2011). Epigallocatechin gallate inhibits hepatitis C virus (HCV) viral protein NSSB. Talanta, 85, 2639–2642.PubMedCrossRefGoogle Scholar
  74. Rosenblum, L. S., Mirkin, I. R., Allen, D. T., Safford, S., & Hadler, S. C. (1990). A multifocal outbreak of hepatitis A traced to commercially distributed lettuce. The American Journal of Public Health, 80, 1075–1079.CrossRefGoogle Scholar
  75. Rusak, G., Krajacic, M., Krsnik-Rasol, M., & Gutzelt, H. O. (2007). Quercetin influences response in Nicotiana megalosiphon infected by satellite-associated cucumber mosaic virus. Journal of Plant Diseases, 114, 145–150.Google Scholar
  76. Rusak, G., Krajacic, M., & Plese, N. (1997). Inhibition of tomato bushy stunt virus infection using a quercetagetin flavonoid isolated from Centaurea rupestris L. Antiviral Research, 36, 125–129.PubMedCrossRefGoogle Scholar
  77. Scalbert, A. (1991). Antimicrobial properties of tannins. Phytochemistry, 30, 3875–3883.CrossRefGoogle Scholar
  78. Stals, F., Walther, F. J., & Bruggeman, C. A. (1984). Faecal and pharyngeal shedding of rotavirus and rotavirus IgA in children with diarrhoea. Journal of Medical Virology, 14, 333–339.PubMedCrossRefGoogle Scholar
  79. Su, X., Howell, A. B., & D’Souza, D. H. (2010a). The effect of cranberry juice and cranberry proanthocyanidins on the infectivity of human enteric viral surrogates. Food Microbiology, 27, 535–540.PubMedCrossRefGoogle Scholar
  80. Su, X., Howell, A. B., & D’Souza, D. H. (2010b). Antiviral effects of cranberry juice and cranberry proanthocyanidins on foodborne viral surrogates—a time dependence study in vitro. Food Microbiology, 27, 985–991.PubMedCrossRefGoogle Scholar
  81. Tanner, G. (2004). Condensed tannins. In K. M. Davies, J. A. Roberts, H. Imaseki, M. T. McManus, & K. R. C. Rose (Eds.), Plant pigments and their manipulation. (pp. 150–154). Boca Raton: Ann. Plant Rev. CRC Press.Google Scholar
  82. Tran, A., Talmud, D., Lejeune, B., Jovenin, N., Renois, F., Payan, C., et al. (2010). Prevalence of rotavirus, adenovirus, norovirus, and astrovirus infections and coinfections among hospitalized children in northern France. Journal of Clinical Microbiology, 48, 1943–1946.PubMedCrossRefGoogle Scholar
  83. Tu, H. A., Woerdenbag, H. J., Kane, S., Rozenbaum, M. H., Li, S. C., & Postma, M. J. (2011). Economic evaluations of rotavirus immunization for developing countries: a review of the literature. Expert Reviews of Vaccines, 10, 1037–1051.CrossRefGoogle Scholar
  84. Vega, E., Smith, J., Garland, J., Matos, A., & Pillai, S. D. (2005). Variability of virus attachment patterns to butterhead lettuce. Journal of Food Protection, 68, 2112–2117.PubMedGoogle Scholar
  85. Verma, V. S. (1973). Study on the effect of flavonoids on the infectivity of cotyledons of marrow plants of potato virus X. Zbl Bakt Abt II, 128, 467–472.Google Scholar
  86. Wang, C.-Y., Huang, S.-C., Zhang, Y., Lai, Z.-R., Kung, S. H., Chang, Y.-S., & Lin, C.-W. (2012). Antiviral ability of Kalanchoe gracillis leaf extract against enterovirus 71 and coxsackievirus A16. Evidence-Based Complementary and Alternative Medicine, 503165. doi:10.1155/2012/503165.
  87. Ward, R. L., Bernstein, D. J., & Staat, M. A. (2009). Rotavirus. In R. D. Feigin, J. D. Cherry, G. J. Dermier-Harrison, & S. L. Kaplan (Eds.), Textbook of pediatric infectious diseases (6th ed., pp. 2245–2270). Philadelphia: Saunders Elsevier.Google Scholar
  88. Weis, C., & Clarke, H. F. (1985). Rapid Inactivation of rotaviruses by exposure to acid buffer or acidic gastric Juice. Journal of General Virology, 66, 2725–2730.CrossRefGoogle Scholar
  89. Wheeler, C., Vogt, T. M., Armstrong, G. L., Vaughn, G., Wetman, A., Nainan, O. V., et al. (2005). An outbreak of hepatitis associated with green onions. New England Journal of Medicine, 335, 890–897.CrossRefGoogle Scholar
  90. Yamashita, T., Mori, Y., Miyazaki, N., Cheng, R. H., Yoshimura, M., Unno, H., Shima, R., Moriishi, K., Tsukihara, T., Li, T. C., Takeda, N., Miyamura, T., & Matsuura Y. (2009). Biological and immunological characteristics of hepatitis-like particles based on the crystal structure. Proceedings of the National Academy of Sciences, USA, 106, 12986–12991.Google Scholar
  91. Yang, K., & Baines, J. D. (2009). Proline and tyrosine residues in scaffold proteins of herpes simplex virus 1 critical to the interaction with portal protein and its incorporation into capsids. Journal of Virology, 83, 8076–8081.PubMedCrossRefGoogle Scholar
  92. Zhu, Q. Y., Hammerstone, J. F., Lazarius, S. A., Schmitz, H. H., & Keen, C. I. (2003). Stabilizing effect of ascorbic acid on Flavan-3-ols and dimeric procyanidins from cocoa. Journal of Agricultural and Food Chemistry, 51, 828–833.PubMedCrossRefGoogle Scholar
  93. Zhu, Q. Y., Holt, R., Lazarius, S. A., Ensunza, J. L., Hammerstone, J. F., Schmitz, H. H., et al. (2002). Stability of the flavan-3-ols epicatechin and catechin and related procyanidins derived from cocoa. Journal of Agricultural and Food Chemistry, 50, 1700–17050.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Steven M. Lipson
    • 1
  • Fatma S. Ozen
    • 1
    • 2
  • Laina Karthikeyan
    • 3
  • Ronald E. Gordon
    • 4
  1. 1.Department of Biology and Health PromotionSt. Francis CollegeBrooklyn HeightsUSA
  2. 2.Selcuk UniversityKonyaTurkey
  3. 3.New York City College of Technology, CUNYBrooklynUSA
  4. 4.Mount Sinai Medical CenterNew YorkUSA

Personalised recommendations