Food and Environmental Virology

, Volume 2, Issue 3, pp 183–193

Processing Strategies to Inactivate Enteric Viruses in Shellfish

  • Gary P. Richards
  • Catherine McLeod
  • Françoise S. Le Guyader
Original Paper

Abstract

Noroviruses, hepatitis A and E viruses, sapovirus, astrovirus, rotavirus, Aichi virus, enteric adenoviruses, poliovirus, and other enteroviruses enter shellfish through contaminated seawater or by contamination during handling and processing, resulting in outbreaks ranging from isolated to epidemic. Processing and disinfection methods include shellfish depuration and relaying, cooking and heat pasteurization, freezing, irradiation, and high pressure processing. All the methods can improve shellfish safety; however, from a commercial standpoint, none of the methods can guarantee total virus inactivation without impacting the organoleptic qualities of the shellfish. Noroviruses cause the majority of foodborne viral illnesses, yet there is conflicting information on their susceptibility to inactivation by processing. The inability to propagate and quantitatively enumerate some viral pathogens in vitro or in animal models has led to the use of norovirus surrogates, such as feline calicivirus and murine norovirus. During processing, these surrogates may not mimic the inactivation of the viruses they represent and are, therefore, of limited value. Likewise, reverse transcription-PCR has limited usefulness in monitoring processing effectiveness due to its inability to identify infectious from inactivated viruses. This article (a) describes mechanisms of virus uptake and persistence in shellfish, (b) reviews the state-of-the-art in food processing strategies for the inactivation of enteric viruses in shellfish, (c) suggests the use of combined processing procedures to enhance shellfish safety, (d) highlights limitations in research data derived from virus surrogate studies and molecular assay procedures, and (e) recommends enhanced funding for human volunteer studies and the development of assays to detect viable viruses.

Keywords

Shellfish Processing Norovirus Hepatitis A virus Depuration High pressure Heat inactivation 

References

  1. Abad, F. X., Pintó, R. M., Gajardo, R., & Bosch, A. (1997). Viruses in mussels: Public health implications and depuration. Journal of Food Protection, 60, 677–681.Google Scholar
  2. Akin, E. W., Hamblet, F. E., & Hill, W. F. Jr. (1966). Accumulation and depuration of poliovirus by individual oysters (5 pp.). Gulf Coast Shellfish Sanitation Research Center, Dauphin Island, Alabama. Technical memorandum GCSSRC-FY66-5.Google Scholar
  3. Ang, L. H. (1998). An outbreak of viral gastroenteritis associated with eating raw oysters. Communicable Disease and Public Health, 1, 38–40.PubMedGoogle Scholar
  4. Anonymous. (1999). National Shellfish Sanitation Program Model Ordinance IV. Shellstock growing areas. Washington, DC: Department of Health and Human Services, U.S. Food and Drug Administration.Google Scholar
  5. Anonymous. (2004a). Regulation (EC) No 852/2004. On the Hygiene of Foodstuffs. Official Journal of the European Union, L139/1, 1–54.Google Scholar
  6. Anonymous. (2004b). Regulation (EC) No 853/2004. Laying down specific hygiene rules for food of animal origin. Official Journal of the European Union, L139/55, 55–151.Google Scholar
  7. Anonymous. (2004c). Regulation (EC) No 854/2004. Laying down specific rules for the organisation of official controls on products of animal origin intended for human consumption. Official Journal of the European Union, L155/206.Google Scholar
  8. Bae, J., & Schwab, K. J. (2008). Evaluation of murine norovirus, feline calicivirus, poliovirus, and MS2 as surrogates for human norovirus in a model of viral persistence in surface water and groundwater. Applied and Environmental Microbiology, 74, 477–484.CrossRefPubMedGoogle Scholar
  9. Baek, S. Y., Lim, S. Y., Lee, D. H., Min, K. H., & Kim, C. M. (2000). Incidence and characterization of Listeria monocytogenes from domestic and imported foods in Korea. Journal of Food Protection, 63, 186–189.PubMedGoogle Scholar
  10. Belding, D. L., & Lane, F. C. (1909). The shellfisheries of Massachusetts: Their present condition and extent. In A report upon the mollusk shellfisheries of Massachusetts. Boston: Wright & Potter.Google Scholar
  11. Beller, N. (1992). Hepatitis A outbreak in Anchorage, Alaska, traced to ice slush beverages. Western Journal of Medicine, 156, 624–627.PubMedGoogle Scholar
  12. Belliot, G., Lavaux, A., Souihel, D., Agnello, D., & Pothier, P. (2008). Use of murine norovirus as a surrogate to evaluate resistance of human norovirus to disinfectants. Applied and Environmental Microbiology, 74, 3315–3318.CrossRefPubMedGoogle Scholar
  13. Bidawid, S., Farber, J. M., Satter, S. A., & Hayward, S. (2000). Heat inactivation of hepatitis A virus in dairy foods. Journal of Food Protection, 63, 522–528.PubMedGoogle Scholar
  14. Brett, M. S., Short, P., & McLauchlin, J. (1998). A small outbreak of listeriosis associated with smoked mussels. International Journal of Food Microbiology, 43, 223–229.CrossRefPubMedGoogle Scholar
  15. Brown, J. W. (1982). Economic analysis of “steam-shock” and “pasteurization” processes for oyster shucking. Marine Fisheries Review, 44, 21–25.Google Scholar
  16. Cacopardo, B., Russo, R., Preiser, W., Benanti, F., Brancati, F., & Nunnari, A. (1997). Acute hepatitis E in Catania (eastern Sicily) 1980–1994. The role of hepatitis E virus. Infection, 25, 313–316.CrossRefPubMedGoogle Scholar
  17. Calci, K. R., Meade, G. K., Tezloff, R. C., & Kingsley, D. H. (2005). High-pressure inactivation of hepatitis A virus within oysters. Applied and Environmental Microbiology, 71, 339–343.CrossRefPubMedGoogle Scholar
  18. Canesi, L., Gallo, G., Gavioli, M., & Pruzzo, C. (2002). Bacteria-hemocyte interactions and phagocytosis in marine bivalves. Microscopy Research and Technique, 57, 469–476.CrossRefPubMedGoogle Scholar
  19. Cannon, J. L., Papafragkou, E., Park, G. W., Osborne, J., Jaykus, L. A., & Vinjé, J. (2006). Surrogates for the study of norovirus stability and inactivation in the environment: A comparison of murine norovirus and feline calicivirus. Journal of Food Protection, 69, 2761–2765.PubMedGoogle Scholar
  20. Chai, T., Liang, K. T., Pace, J., & Schlimme, D. V. (1991). Effect of heat processing on quality of pasteurized oysters. Journal of Food Science, 56, 1292–1294.CrossRefGoogle Scholar
  21. Chironna, M., Germinario, C., De Medici, D., Fiore, A., Di Pasquale, S., Quarto, M., et al. (2002). Detection of hepatitis A virus in mussels from different sources marketed in Puglia region (South Italy). International Journal of Food Microbiology, 75, 11–18.CrossRefPubMedGoogle Scholar
  22. Conaty, S., Bird, P., Bell, G., Kraa, E., Grohmann, G., & McAnulty, J. M. (2000). Hepatitis A in New South Wales, Australia from consumption of oysters: The first reported outbreak. Epidemiology and Infection, 124, 121–130.CrossRefPubMedGoogle Scholar
  23. Cook, D. W., & Ellender, R. D. (1986). Relaying to decrease the concentration of oyster-associated pathogens. Journal of Food Protection, 49, 196–202.Google Scholar
  24. Dawson, D. J., Paish, A., Staffell, L. M., Seymour, I. J., & Appleton, H. (2005). Survival of viruses on fresh produce, using MS2 as a surrogate for norovirus. Journal of Applied Microbiology, 98, 203–209.CrossRefPubMedGoogle Scholar
  25. De Medici, D., Ciccozzi, M., Foire, A., Di Pasquale, S., Parlato, A., Ricci-Bitti, P., et al. (2001). Closed-circuit system for the depuration of mussels experimentally contaminated with hepatitis A virus. Journal of Food Protection, 64, 877–880.PubMedGoogle Scholar
  26. de Roda Husman, A. M., Bijkerk, P., Lodder, W., van den Berg, H., Pribil, W., Cabaj, A., et al. (2004). Calicivirus inactivation by nonionizing (253.7-nanometer-wavelength [UV]) and ionizing (gamma) radiation. Applied and Environmental Microbiology, 70, 5089–5093.CrossRefPubMedGoogle Scholar
  27. Di Girolamo, R., Liston, J., & Matches, J. (1972). Effects of irradiation on the survival of virus in West Coast oysters. Applied Microbiology, 24, 1005–1006.PubMedGoogle Scholar
  28. Di Girolamo, R., Liston, J., & Matches, J. (1975). Uptake an elimination of poliovirus by West Coast oysters. Applied Microbiology, 29, 260–264.PubMedGoogle Scholar
  29. DiGirolamo, R., Liston, J., & Matches, J. (1970). Survival of virus in chilled, frozen, and processed oysters. Applied Microbiology, 20, 58–63.PubMedGoogle Scholar
  30. Doultree, J. C., Druce, J. D., Birch, C. J., Bowden, D. S., & Marshall, J. A. (1999). Inactivation of feline calicivirus, a Norwalk virus surrogate. Journal of Hospital Infection, 41, 51–57.CrossRefPubMedGoogle Scholar
  31. Enriquez, R., Frösner, G. G., Hochstein-Mintzel, V., Riedemann, S., & Reinhardt, G. (1992). Accumulation and persistence of hepatitis A virus in mussels. Journal of Medical Virology, 37, 174–179.CrossRefPubMedGoogle Scholar
  32. Filppi, J. A., & Banwart, G. J. (1974). Effect of the fat content of ground beef on the heat inactivation of poliovirus. Journal of Food Science, 39, 865–868.CrossRefGoogle Scholar
  33. Goldmintz, D., Babinchak, J. A., Richards, G. P., & Graikoski, J. T. (1983). Bacteriological evaluation of steam pasteurized oysters, Crassostrea virginica. Developments in Industrial Microbiology, 24, 457–466.Google Scholar
  34. Greening, G., Hewitt, J., Hay, B. E., & Grant, C. M. (2003). Persistence of Norwalk-like viruses over time in Pacific oysters grown in the natural environment. In A. Villalba, B. Reguera, J. L. Romalde, & R. Beiras (Eds.), Proceedings of the 4th international conference on molluscan shellfish safety (pp. 367–377). Conselleria de Pesca e Asuntos Maritimos da Xunta de Galacia and Intergovernmental Oceanographic Commission of UNESCO, Santiago de Compostela, Spain.Google Scholar
  35. Grohmann, G. S., Murphy, A. M., Christopher, P. J., Auty, G., & Greenberg, H. B. (1981). Norwalk virus gastroenteritis in volunteers consuming depurated oysters. Australian Journal of Experimental Biology and Medical Science, 59, 219–228.CrossRefPubMedGoogle Scholar
  36. Grove, S. F., Lee, A., Stewart, C. M., & Ross, T. (2009). Development of a high pressure processing inactivation model for hepatitis A virus. Journal of Food Protection, 72, 1434–1442.PubMedGoogle Scholar
  37. Guillois-Bécel, Y., Couturier, E., Le Saux, J. C., Roque-Afonso, A. M., Le Guyader, F. S., Le Goas, A., et al. (2009). An oyster-associated hepatitis A outbreak in France in 2007. Eurosurveillance, 14, 1–6.Google Scholar
  38. Halliday, M. L., Kang, L. Y., Zhou, T. K., Hu, M. D., Pan, Q. C., Fu, T. Y., et al. (1991). An epidemic of hepatitis A attributable to the ingestion of raw clams in Shanghi, China. Journal of Infectious Diseases, 164, 852–859.PubMedGoogle Scholar
  39. Hamblet, F. E., Hill, W. F., Jr., Akin, E. W., & Benton, W. H. (1969). Oysters and human viruses: Effects of seawater turbidity, on poliovirus uptake and elimination. American Journal of Epidemiology, 89, 562–571.PubMedGoogle Scholar
  40. Harewood, P., Rippey, S., & Montesalvo, M. (1994). Effect of gamma irradiation on shelf life and bacterial and viral loads in hard-shelled clams (Mercenaria mercenaria). Applied and Environmental Microbiology, 60, 2666–2670.PubMedGoogle Scholar
  41. Hay, B. E., & Scotti, P. (1986). Evidence for intracellular absorption of virus by the Pacific oyster, Crassostrea gigas. New Zealand Journal of Marine and Freshwater Research, 20, 655–659.CrossRefGoogle Scholar
  42. Herdman, W. A., & Boyce, R. (1899). Oysters and disease. An account of certain observations upon the normal and pathological history and bacteriology of the oyster and other shellfish (pp. 35–40). Lancashire Sea-Fisheries Memoir No. 1, London.Google Scholar
  43. Herdman, W. A., & Scott, A. (1896). Report on the investigations carried out in 1895 in connection with the Lancashire Sea-Fisheries Laboratory at the University College, Liverpool. Proceedings and Transactions of the Liverpool Biological Society, 10, 103–174.Google Scholar
  44. Hewitt, J., & Greening, G. E. (2004). Survival and persistence of norovirus, hepatitis A virus, and feline calicivirus in marinated mussels. Journal of Food Protection, 67, 1743–1750.PubMedGoogle Scholar
  45. Hewitt, J., & Greening, G. E. (2006). Effect of heat treatment on hepatitis A virus and norovirus in New Zealand greenshell mussels (Perna canaliculus) by quantitative real-time reverse transcription PCR and cell culture. Journal of Food Protection, 69, 2217–2223.PubMedGoogle Scholar
  46. Hewitt, J., Rivera-Aban, M., & Greening, G. E. (2009). Evaluation of murine norovirus as a surrogate for human norovirus and hepatitis A virus in heat inactivation studies. Journal of Applied Microbiology, 107, 65–71.CrossRefPubMedGoogle Scholar
  47. Hoff, J. C., & Becker, R. C. (1969). The accumulation and elimination of crude and clarified poliovirus suspensions by shellfish. American Journal of Epidemiology, 90, 53–61.PubMedGoogle Scholar
  48. Jung, P.-M., Park, J. S., Park, J.-G., Park, J.-N., Han, I.-J., Song, B.-S., et al. (2009). Radiation sensitivity of poliovirus, a model for norovirus, inoculated in oyster (Crassostrea gigas) and culture broth under different conditions. Radiation Physics and Chemistry, 78, 597–599.CrossRefGoogle Scholar
  49. Khan, A. S., Moe, C. L., Glass, R. I., Monroe, S. S., Estes, M. K., Chapman, L. E., et al. (1994). Norwalk virus-associated gastroenteritis traced to ice consumption aboard a cruise ship in Hawaii: Comparison and application of molecular method-based assays. Journal of Clinical Microbiology, 32, 318–322.PubMedGoogle Scholar
  50. Kingsley, D. H., & Chen, H. (2008). Aqueous matrix composition and pH influence feline calicivirus inactivation by high pressure processing. Journal of Food Protection, 71, 1598–1603.PubMedGoogle Scholar
  51. Kingsley, D. H., & Chen, H. (2009). Influence of pH, salt, and temperature on pressure inactivation of hepatitis A virus. International Journal of Food Microbiology, 130, 61–64.CrossRefPubMedGoogle Scholar
  52. Kingsley, D. H., Chen, H., & Hoover, D. G. (2004). Inactivation of selected picornaviruses by high hydrostatic pressure. Virus Research, 102, 221–224.CrossRefPubMedGoogle Scholar
  53. Kingsley, D. H., Guan, D., Hoover, D. G., & Chen, H. (2006). Inactivation of hepatitis A virus by high-pressure processing: The role of temperature and pressure oscillation. Journal of Food Protection, 69, 2454–2459.PubMedGoogle Scholar
  54. Kingsley, D. H., Holliman, D. R., Calci, K. R., Chen, H., & Flick, G. J. (2007). Inactivation of a norovirus by high-pressure processing. Applied and Environmental Microbiology, 73, 581–585.CrossRefPubMedGoogle Scholar
  55. Kingsley, D. H., Hoover, D. G., Papafragkou, E., & Richards, G. P. (2002). Inactivation of hepatitis A virus and a calicivirus by high hydrostatic pressure. Journal of Food Protection, 65, 1605–1609.PubMedGoogle Scholar
  56. Kingsley, D. H., & Richards, G. P. (2003). Persistence of hepatitis A virus in oysters. Journal of Food Protection, 66, 331–334.PubMedGoogle Scholar
  57. Le Guyader, F. S., Le Saux, J. C., Ambert-Balay, K., Krol, J., Serais, O., Parnaudeau, S., et al. (2008). Aichi virus, norovirus, astrovirus, enterovirus, and rotavirus involved in clinical cases from a French oyster-related gastroenteritis outbreak. Journal of Clinical Microbiology, 46, 4011–4017.CrossRefPubMedGoogle Scholar
  58. Le Guyader, F. S., Loisy, F., Atmar, R. L., Hutson, A. M., Estes, M. K., Ruvoen, N., et al. (2006). Norwalk virus-specific binding to oyster digestive tissues. Emerging Infectious Diseases, 12, 931–936.PubMedGoogle Scholar
  59. Lees, D. (2000). Viruses and bivalve shellfish. International Journal of Food Microbiology, 59, 81–116.CrossRefPubMedGoogle Scholar
  60. Liu, O. C. (1968). Appraisal and planning of virus research program (38 pp.). Northeast Shellfish Sanitation Research Center, U.S. Public Health Service, Narragansett, Rhode Island.Google Scholar
  61. Liu, O. C., Seraichekas, H. R., & Murphy, B. L. (1967a). Viral pollution and self-cleansing mechanisms of hard clams. In G. Berg (Ed.), Transmission of viruses by the water route (pp. 419–437). New York: Interscience Publishers.Google Scholar
  62. Liu, O. C., Seraichekas, H. R., & Murphy, B. L. (1967b). Viral depuration of the Northern quahaug. Applied Microbiology, 15, 307–315.PubMedGoogle Scholar
  63. Loisy, F., Atmar, R. L., Le Le Saux, J. C., Cohen, J., Caprais, M. P., Pommepuy, M., et al. (2005). Use of rotavirus virus-like particles as surrogates to evaluate virus persistence in shellfish. Applied and Environmental Microbiology, 71, 6049–6053.CrossRefPubMedGoogle Scholar
  64. Mallet, J. C., Beghian, L. E., Metcalf, T. G., & Kaylor, J. D. (1991). Potential of irradiation technology for improved shellfish sanitation. Journal of Food Safety, 11, 231–245.CrossRefGoogle Scholar
  65. McLeod, C., Hay, B., Grant, C., Greening, G., & Day, D. (2009a). Localization of norovirus and poliovirus in Pacific oysters. Journal of Applied Microbiology, 106, 1220–1230.CrossRefPubMedGoogle Scholar
  66. McLeod, C., Hay, B., Grant, C., Greening, G., & Day, D. (2009b). Inactivation and elimination of human enteric viruses by Pacific oysters. Journal of Applied Microbiology, 107, 1809–1818.CrossRefPubMedGoogle Scholar
  67. Meinhold, A. F., & Sobsey, M. D. (1982). The uptake, elimination and tissue distribution of poliovirus in the American oyster, Crassostrea virginica (p. 181). Abstracts of the Annual Meeting of the American Society for Microbiology.Google Scholar
  68. Metcalf, T. G., Mullin, B., Eckerson, D., Moulton, E., & Larkin, E. P. (1979). Bioaccumulation and depuration of enteroviruses by the soft-shelled clam, Mya arenaria. Applied and Environmental Microbiology, 38, 275–282.PubMedGoogle Scholar
  69. Millard, J., Appleton, H., & Parry, J. V. (1987). Studies on heat inactivation of hepatitis A virus with special reference to shellfish. Part 1. Procedures for infection and recovery of virus from laboratory-maintained cockles. Epidemiology and Infection, 98, 397–414.CrossRefPubMedGoogle Scholar
  70. Mitchell, J. R., Presnell, M. W., Akin, E. W., Cummings, J. M., & Liu, O. C. (1966). Accumulation and elimination of poliovirus by the Eastern oyster. American Journal of Epidemiology, 84, 40–50.PubMedGoogle Scholar
  71. Mokhtari, A., & Jaykus, L. A. (2009). Quantitative exposure model for the transmission of norovirus in retail food preparation. International Journal of Food Microbiology, 133, 38–47.CrossRefPubMedGoogle Scholar
  72. Mormann, S., Dabisch, M., & Becker, B. (2010). Effects of technological processes on the tenacity and inactivation of norovirus GGII in experimentally contaminated foods. Applied and Environmental Microbiology, 76, 536–545.CrossRefPubMedGoogle Scholar
  73. Nakagawa-Okamoto, R., Arita-Nishida, T., Todo, S., Kato, H., Iwata, H., Akiyama, M., et al. (2009). Detection of multiple sapovirus genotypes and genogroups in oyster-associated outbreaks. Japanese Journal of Infectious Diseases, 62, 63–66.PubMedGoogle Scholar
  74. Nuanualsuwan, S., Mariam, T., Himathongkham, S., & Cliver, D. O. (2002). Ultraviolet inactivation of feline calicivirus, human enteric viruses and coliphages. Photochemistry and Photobiology, 76, 406–410.CrossRefPubMedGoogle Scholar
  75. Power, U. F., & Collins, J. K. (1989). Differential depuration of poliovirus, Escherichia coli, and a coliphage by the common mussel, Mytilus edulis. Applied and Environmental Microbiology, 55, 1386–1390.PubMedGoogle Scholar
  76. Power, U. F., & Collins, J. K. (1990). Tissue distribution of a coliphage and Escherichia coli in mussels after contamination and depuration. Applied and Environmental Microbiology, 56, 803–807.PubMedGoogle Scholar
  77. Richards, G. P. (1988). Microbial purification of shellfish: A review of depuration and relaying. Journal of Food Protection, 51(3), 218–251.Google Scholar
  78. Richards, G. P. (1991). Shellfish depuration, Chap. 16. In D. R. Ward & C. R. Hackney (Eds.), Microbiology of marine food products (pp. 395–428). New York: Van Nostrand Reinhold.Google Scholar
  79. Richards, G. P. (1999). Limitations of molecular biological techniques for assessing the virological safety of foods. Journal of Food Protection, 62, 691–697.PubMedGoogle Scholar
  80. Richards, G. P., Watson, M. A., & Kingsley, D. H. (2004). A SYBR green, real-time RT-PCR method to detect and quantitate Norwalk virus in stools. Journal of Virological Methods, 116, 63–70.CrossRefPubMedGoogle Scholar
  81. Romalde, J. L., Estes, M. K., Szücs, G., Atmar, R. L., Woodley, C. M., & Metcalf, T. G. (1994). In situ detection of hepatitis A virus in cell cultures and shellfish tissues. Applied and Environmental Microbiology, 60, 1921–1926.PubMedGoogle Scholar
  82. Schwab, K. J., Neill, F. H., Estes, M. K., Metcalf, T. G., & Atmar, R. L. (1998). Distribution of Norwalk virus within shellfish following bioaccumulation and subsequent depuration by detection using RT-PCR. Journal of Food Protection, 61, 1674–1680.PubMedGoogle Scholar
  83. Seamer, C. (2007). The biology of virus uptake and elimination by Pacific oysters (Crassostrea gigas) (pp. 239). School of Biological Sciences. Wellington, Victoria University of Wellington. PhD Thesis.Google Scholar
  84. Seraichekas, H. R., Brashear, D. A., Barnick, J. A., Carey, P. F., & Liu, O. C. (1968). Viral depuration by assaying individual shellfish. Applied Microbiology, 16, 1865–1871.PubMedGoogle Scholar
  85. Shimasaki, N., Kiyohara, T., Totsuka, A., Nojima, K., Okada, Y., Kajioka, J., et al. (2009). Inactivation of hepatitis A virus by heat and high hydrostatic pressure: Variation among laboratory strains. Vox Sanguinis, 96, 14–19.CrossRefPubMedGoogle Scholar
  86. Sobsey, M. D., Davis, A. L., & Rullman, V. A. (1987). Persistence of hepatitis A virus and other viruses in depurated Eastern oysters. Proceedings Oceans, 87(5), 1740–1745.Google Scholar
  87. Tomar, B. S. (1998). Hepatitis E in India. Zhonghua Min Guo Xiao Er Ke Yi Xue Hui Za Zhi, 39, 150–156.PubMedGoogle Scholar
  88. Ueki, Y., Shoji, M., Suto, A., Tanabe, T., Okimura, Y., Kikuchi, Y., et al. (2007). Persistence of calicivirus in artificially contaminated oysters during depuration. Applied and Environmental Microbiology, 73, 5698–5701.CrossRefPubMedGoogle Scholar
  89. Wang, D., Wu, Q., Kou, X., Yao, L., & Zhang, J. (2008). Distribution of norovirus in oyster tissues. Journal of Applied Microbiology, 105, 1966–1972.CrossRefPubMedGoogle Scholar
  90. Wolf, S., Rivera-Aban, M., & Greening, G. E. (2009). Long-range reverse transcription as a useful tool to assess the genomic integrity of norovirus. Food and Environmental Virology, 1, 129–136.CrossRefGoogle Scholar

Copyright information

© U.S. Government 2010

Authors and Affiliations

  • Gary P. Richards
    • 1
  • Catherine McLeod
    • 2
  • Françoise S. Le Guyader
    • 3
  1. 1.U.S. Department of Agriculture, Agricultural Research Service, Microbial Food Safety Research UnitDelaware State UniversityDoverUSA
  2. 2.South Australian Research and Development InstituteAdelaideAustralia
  3. 3.Laboratoire de Microbiologie, Centre de NantesIFREMERNantes Cedex 03France

Personalised recommendations