Food and Environmental Virology

, Volume 2, Issue 2, pp 83–88 | Cite as

High Pressure Inactivation of HAV Within Mussels

  • Valentina Terio
  • Giuseppina Tantillo
  • Vito Martella
  • Pietro Di Pinto
  • Canio Buonavoglia
  • David H. Kingsley
Original Paper


The potential of high pressure processing to inactivate hepatitis A virus (HAV) within Mediterranean mussels (Mytilus galloprovincialis) and blue mussels (Mytilus edulis) was evaluated. HAV was bioaccumulated within mussels to approximately 6-log10 PFU by exposure of mussels to HAV-contaminated seawater. After shucking, 5 min pressure treatments of 300, 325, 350, 375, and 400 MegaPascals (MPa) were performed at room temperature (18–22°C). For blue mussels, log10 PFU reductions of HAV averaged 2.1 and 3.6 for treatments of 350 and 400 MPa, while for Mediterranean mussels reductions of 1.7 and 2.9 log10 PFU MPa were observed for equivalent treatments. These results demonstrate that high pressure processing is capable of inactivating HAV within mussels.


Mussels Hepatitis A virus High pressure processing 



We wish to thank Gloria Meade (USDA, Dover DE) and Valeriana Colao (University of Bari) for technical assistance. We also wish to thank Gary Richards (USDA, Dover, DE, USA) and Pina Fratamico (USDA, Wyndmoor, PA, USA) for critical review of the manuscript.


Mention of trade names or commercial products in this article is solely for the purpose of providing specific information and does not imply recommendation or endorsement by the U.S. Department of Agriculture.


  1. Ajelli, M., Iannelli, M., Manfredi, P., & degli Atti, M. L. (2008). Basic mathematical models for the temporal dynamics of HAV in medium-endemicity Italian areas. Vaccine, 26, 1697–1707.CrossRefPubMedGoogle Scholar
  2. Berlin, D. L., Herson, D. S., Hicks, D. T., & Hoover, D. G. (1999). Response of pathogenic Vibrio species to high hydrostatic pressure. Applied and Environmental Microbiology, 65, 2776–2780.PubMedGoogle Scholar
  3. Bosch, A., Pintó, R. M., & Abad, F. X. (1995). Differential accumulation and depuration of human enteric viruses by mussels. Water Science and Technology, 31, 447–451.CrossRefGoogle Scholar
  4. Calci, K. R., Burkhardt, W., & Smith, A. V. (2002). High hydrostatic pressure inactivation of calicivirus (SMSV-17) in oysters. International Association for Food Protection Annual Meeting, San Diego, CA, June 30–July 3 Abstract #P224.Google Scholar
  5. Calci, K. R., Meade, G. K., Tetzloff, R. C., & Kingsley, D. H. (2005). High-pressure inactivation of hepatitis A virus within oysters. Applied and Environmental Microbiology, 71, 339–343.CrossRefPubMedGoogle Scholar
  6. Chen, H., Hoover, D. G., & Kingsley, D. H. (2005). Temperature and treatment time influence high hydrostatic pressure inactivation of feline calicivirus, a norovirus surrogate. Journal of Food Protection, 68, 2389–2394.PubMedGoogle Scholar
  7. Chironna, M., Germinaro, C., DeMedici, D., Fiore, A., DiPasquale, S., Quarto, M., et al. (2002). Detection of hepatitis A virus in mussels from different sources marketed in Puglia region (South Italy). International Journal of Food Microbiology, 75, 11–18.CrossRefPubMedGoogle Scholar
  8. Cliver, D. O. (1997). Virus transmission via food. Food Technology, 51, 71–78.Google Scholar
  9. Cook, D. W. (2003). Sensitivity of Vibrio species in phosphate buffered saline and in oysters to high pressure processing. Journal of Food Protection, 66, 2276–8266.PubMedGoogle Scholar
  10. Costafreida, M. I., Bosch, A., & Pintó, R. M. (2006). Development, evaluation, and standardization of a real-time reverse-transcription PCR assay for quantification of hepatitis A virus in clinical and shellfish samples. Applied and Environmental Microbiology, 72, 3846–3855.CrossRefGoogle Scholar
  11. Croci, L., De Medici, D., Morace, G., Fiore, A., Scalfaro, C., Beneduce, F., et al. (1999). Detection of hepatitis A virus in shellfish by nested reverse transcription-PCR. International Journal of Food Microbiology, 48, 67–71.CrossRefPubMedGoogle Scholar
  12. Croci, L., DeMedici, D., DiPaquale, S., & Toti, L. (2005). Resistance of hepatitis A virus in mussels subjected to different domestic cookings. International Journal of Food Microbiology, 105, 139–144.CrossRefPubMedGoogle Scholar
  13. Croci, L., Losio, M. N., Suffredini, E., DiPasquale, S., Fallacara, F., & Arcangeli, G. (2007). Assessment of human enteric viruses in shellfish from the northern Adriatic sea. International Journal of Food Microbiology, 114, 252–257.CrossRefPubMedGoogle Scholar
  14. Cromeans, T., Sobsey, M. D., & Fields, H. A. (1987). Development of a plaque assay for a cytopathic, rapidly replicating isolate of hepatitis A virus. Journal of Medical Virology, 22, 45–56.CrossRefPubMedGoogle Scholar
  15. De Medici, D., Ciccozzi, M., Fiore, A., Di Pasquale, S., Parlato, A., Ricci-Bitti, P., et al. (2001). Closed-circuit system for the depuration of mussels experimentally contaminated with hepatitis A virus. Journal of Food Protection, 64, 877–880.PubMedGoogle Scholar
  16. Di Pinto, A., Forte, V. T., Tantillo, G. M., Terio, V., & Buonavoglia, C. (2003). Detection of hepatitis A virus in shellfish (Mytilus galloprovincialis) with RT-PCR. Journal of Food Protection, 66, 1681–1685.PubMedGoogle Scholar
  17. Enriquez, R., Frösner, G. G., Hochstein-Mintzel, V., Riedemann, S., & Reinhardt, G. (1992). Accumulation and persistence of hepatitis A virus in mussels. Journal of Medical Virology, 37, 174–179.CrossRefPubMedGoogle Scholar
  18. FitzSimons, D., Hendrickx, G., Vorsters, A., & Van Damme, P. (2010). Hepatitis A and E: Update on prevention and epidemiology. Vaccine, 28, 583–588.CrossRefPubMedGoogle Scholar
  19. Franco, E., Toti, L., Gabrieli, R., Croci, L., Demedici, D., & Pana, A. (1990). Depuration of Mytilis galloprovincialis experimentally contaminated with hepatitis A virus. International Journal of Food Microbiology, 11, 321–327.CrossRefPubMedGoogle Scholar
  20. Grove, S. F., Lee, A., Stewart, C. M., & Ross, T. (2009). Development of a high pressure processing inactivation model for hepatitis A virus. Journal of Food Protection, 72, 1434–1442.PubMedGoogle Scholar
  21. He, H., Adams, R. M., Farkas, D. F., & Morrissey, M. T. (2002). Use of high-pressure processing for oyster shucking and shelf-life extension. Journal of Food Science, 67, 640–645.CrossRefGoogle Scholar
  22. Kingsley, D. H., Calci, K., Holliman, S., Dancho, B., & Flick, G. J. (2009). High pressure inactivation of HAV within oysters: Comparison of whole-in-shell with shucked oyster meats. Food and Environmental Virology, 1, 137–140.CrossRefGoogle Scholar
  23. Kingsley, D. H., & Chen, H. (2008). Aqueous matrix composition influences feline calicivirus inactivation by high pressure processing. Journal of Food Protection, 71, 1598–1603.PubMedGoogle Scholar
  24. Kingsley, D. H., & Chen, H. (2009). Influence of pH, salt, and temperature on pressure inactivation of hepatitis A virus. International Journal of Food Microbiology, 130, 61–64.CrossRefPubMedGoogle Scholar
  25. Kingsley, D. H., Guan, D. S., & Hoover, D. G. (2005). Pressure inactivation of hepatitis A virus in strawberry puree and sliced green onions. Journal of Food Protection, 68, 1748–1751.Google Scholar
  26. Kingsley, D. H., Guan, D., Hoover, D. G., & Chen, H. (2006). Inactivation of hepatitis A virus by high pressure processing: The role of temperature and pressure oscillation. Journal of Food Protection, 69, 2454–2459.PubMedGoogle Scholar
  27. Kingsley, D. H., Holliman, D. R., Calci, K. R., Chen, H., & Flick, G. J. (2007). Inactivation of a norovirus by high pressure processing. Applied and Environmental Microbiology, 73, 581–585.CrossRefPubMedGoogle Scholar
  28. Kingsley, D. H., Hoover, D., Papafragkou, E., & Richards, G. P. (2002). Inactivation of hepatitis A virus and a calicivirus by high hydrostatic pressure. Journal of Food Protection, 65, 1605–1609.PubMedGoogle Scholar
  29. Kingsley, D. H., & Richards, G. P. (2003). Persistence of hepatitis A virus within oysters. Journal of Food Protection, 66, 331–334.PubMedGoogle Scholar
  30. Kural, A. G., & Chen, H. Q. (2008). Conditions for a 5-log reduction of Vibrio vulnificus in oysters through high hydrostatic pressure treatment. International Journal of Food Microbiology, 122, 180–187.CrossRefPubMedGoogle Scholar
  31. Kural, A. G., Shearer, A. E. H., Kingsley, D. H., & Chen, H. (2008). Conditions for high pressure inactivation of Vibrio parahaemolyticus in oysters. International Journal of Food Microbiology, 127, 1–5.CrossRefPubMedGoogle Scholar
  32. Lopez-Caballero, M. E., Perez-Mateos, M., Montero, P., & Borderias, A. J. (2000). Oyster preservation by high-pressure treatment. Journal of Food Protection, 63, 196–201.PubMedGoogle Scholar
  33. Macaluso, A., Petrinca, A., Lanni, L., Saccares, S., Amiti, S., Gabrieli, R., et al. (2006). Identification and sequence analysis of hepatitis A virus in market and environment bivalve mollusks. Journal of Food Protection, 69, 449–452.PubMedGoogle Scholar
  34. McLeod, C., Hay, B., Grant, C., Greening, G., & Day, D. (2009). Inactivation and elimination of human enteric viruses by Pacific oysters. Journal of Applied Microbiology, 107, 1809–1818.CrossRefPubMedGoogle Scholar
  35. Pintó, R. M., Costafreda, M. I., & Bosch, A. (2009). Risk assessment in shellfish outbreaks of hepatitis A. Applied and Environmental Microbiology, 75, 7350–7355.CrossRefPubMedGoogle Scholar
  36. Pontrelli, G., Boccia, D., Di Renzi, M., Massari, M., Giugliano, F., Clentano, L. P., et al. (2008). Epidemiological and virological characterization of a large community-wide outbreak of hepatitis A in southern Italy. Epidemiology and Infection, 136, 1027–1034.CrossRefPubMedGoogle Scholar
  37. Richards, G. P. (1988). Microbial purification of shellfish: A review of depuration and relaying. Journal of Food Protection, 51, 218–251.Google Scholar
  38. Richards, G. P., & Watson, M. A. (2001). Immunochemiluminescent focus assays for the quantitation of hepatitis A virus and rotavirus in cell cultures. Journal of Virological Methods, 94, 69–80.CrossRefPubMedGoogle Scholar
  39. Romalde, J. L., Area, E., Sánchez, G., Ribao, C., Torrado, I., Abad, X., et al. (2002). Prevalence of enterovirus and hepatitis A virus in bivalve mollusks from Galicia (NW Spain): Inadequacy of the EU standards of microbiological quality. International Journal of Food Microbiology, 74, 119–130.CrossRefPubMedGoogle Scholar
  40. Romalde, J. L., Torrado, I., Ribao, C., & Barja, J. L. (2001). Global market: Shellfish imports as a source of reemerging food-borne hepatitis A virus infections in Spain. International Microbiology, 4, 223–226.CrossRefPubMedGoogle Scholar
  41. Sanchez, G., Pintó, R. M., Vanaclocha, H., & Bosch, A. (2002). Molecular characterization of hepatitis A virus isolates from a transcontinental shellfish-borne outbreak. Journal of Clinical Microbiology, 40, 4148–4155.CrossRefPubMedGoogle Scholar
  42. Shieh, Y. C., Khudyakov, Y. E., Xia, G., Ganova-Raeva, L. M., Khambaty, F. M., Woods, J. W., et al. (2007). Molecular confirmation of oysters as the vector for hepatitis A in a 2005 multistate outbreak. Journal of Food Protection, 70, 145–150.PubMedGoogle Scholar
  43. Shimasaki, N., Kiyohara, T., Totsuka, A., Nojima, K., Okada, Y., Yamaguchi, K., et al. (2009). Inactivation of hepatitis A virus by heat and high hydrostatic pressure: Variation among laboratory strains. Vox Sanguinis, 96, 14–19.CrossRefPubMedGoogle Scholar
  44. Suffredini, E., Corrain, C., Arcangeli, G., Fasolato, L., Manfrin, A., Rossetti, E., et al. (2008). Occurrence of enteric viruses in shellfish and relation to climatic-environmental factors. Letters in Applied Microbiology, 47, 467–474.CrossRefPubMedGoogle Scholar

Copyright information

© U.S. Government 2010

Authors and Affiliations

  • Valentina Terio
    • 1
  • Giuseppina Tantillo
    • 1
  • Vito Martella
    • 1
  • Pietro Di Pinto
    • 1
  • Canio Buonavoglia
    • 1
  • David H. Kingsley
    • 2
  1. 1.Department of Veterinary and Public HealthUniversity of BariVelanzano, BariItaly
  2. 2.U.S. Department of Agriculture, Agricultural Research Service, Microbial Food Safety Research Unit, James W. W. Baker CenterDelaware State UniversityDoverUSA

Personalised recommendations