High Pressure Inactivation of HAV Within Oysters: Comparison of Shucked Oysters with Whole-In-Shell Meats

  • David H. Kingsley
  • Kevin Calci
  • Sheila Holliman
  • Brooke Dancho
  • George Flick
Original Papers

Abstract

High pressure inactivation of hepatitis A virus (HAV) within oysters bioaccumulated under simulated natural conditions to levels >105 PFU/oyster has been evaluated. Five minute treatments at 20°C were administered at 350, 375, and 400 MegaPascals (MPa). Shucked and whole-in-shell oysters were directly compared to determine if there were any differences in inactivation levels. For whole-in-shell oysters and shucked oysters, average values obtained were 2.56 and 2.96 log10 inactivation of HAV, respectively, after a 400-MPa treatment. Results indicate that there is no significant inactivation difference (P = 0.05) between inactivation for whole-in-shell oysters as compared to shucked oysters observed for all pressure treatments. This study indicates that commercial high pressure processing applied to whole-in-shell oysters will be capable of inactivating HAV pathogens.

Keywords

HAV High pressure Shell oysters 

References

  1. Berlin, D. L., Herson, D. S., Hicks, D. T., & Hoover, D. G. (1999). Response of pathogenic Vibrio species to high hydrostatic pressure. Applied and Environmental Microbiology, 65, 2776–2780.PubMedGoogle Scholar
  2. Calci, K. R., Meade, G. K., Tetzloff, R. C., & Kingsley, D. H. (2005). High-pressure inactivation of hepatitis A virus within oysters. Applied and Environmental Microbiology, 71, 339–343.CrossRefPubMedGoogle Scholar
  3. Chen, H., Hoover, D. G., & Kingsley, D. H. (2005). Temperature and treatment time influence high hydrostatic pressure inactivation of feline calicivirus, a norovirus surrogate. Journal of Food Protection, 68, 2389–2394.PubMedGoogle Scholar
  4. Cook, D. W. (2003). Sensitivity of Vibrio species in phosphate buffer saline and in oysters to high pressure processing. Journal of Food Protection, 66, 2276–8266.PubMedGoogle Scholar
  5. Kingsley, D. H., & Chen, H. (2009). Influence of pH, salt, and temperature on pressure inactivation of hepatitis A virus. International Journal of Food Microbiology, 130, 61–64.CrossRefPubMedGoogle Scholar
  6. Kingsley, D. H., Guan, D., Hoover, D. G., & Chen, H. (2006). Inactivation of hepatitis A virus by high pressure processing: the role of temperature and pressure oscillation. Journal of Food Protection, 69, 2454–2459.PubMedGoogle Scholar
  7. Kingsley, D. H., Holliman, D. R., Calci, K. R., Chen, H., & Flick, G. J. (2007). Inactivation of a norovirus by high pressure processing. Applied and Environmental Microbiology, 73, 581–585.CrossRefPubMedGoogle Scholar
  8. Kingsley, D. H., Hoover, D., Papafragkou, E., & Richards, G. P. (2002). Inactivation of hepatitis A virus and a calicivirus by high hydrostatic pressure. Journal of Food Protection, 65, 1605–1609.PubMedGoogle Scholar
  9. Kingsley, D. H., & Richards, G. P. (2003). Persistence of hepatitis A virus within oysters. Journal of Food Protection, 66, 331–334.PubMedGoogle Scholar
  10. Kural, A. G., Shearer, A. E. H., Kingsley, D. H., & Chen, H. (2008). Pressure inactivation of Vibrio parahaemolyticus in oysters—the influence of pressure level and treatment temperature. International Journal of Food Microbiology, 127, 1–5.CrossRefPubMedGoogle Scholar
  11. Loisy, F., Atmar, R. L., LeSaux, J. C., Cohen, J., Caprais, M. P., Pommepuy, M., et al. (2005). Use of rotavirus virus like particles as surrogates to evaluate virus persistence in shellfish. Applied and Environmental Microbiology, 71, 6049–6053.CrossRefPubMedGoogle Scholar
  12. Oliver, J. D., & Kaper, J. (2001). Vibrio species. In M. P. Doyle, et al. (Eds.), Food microbiology: fundamentals and frontiers (pp. 263–300). Washington, DC: ASM Press.Google Scholar
  13. Richards, G. P., & Watson, M. A. (2001). Immunochemiluminescent focus assays for the quantitation of hepatitis A virus and rotavirus in cell cultures. Journal of Virological Methods, 94, 69–80.CrossRefPubMedGoogle Scholar
  14. Straub, T. M., Höner zu Bentrup, K., Orosz-Coghlan, P., Dohnalkova, A., Mayer, B. K., Bartholomew, R. A., et al. (2007). In vitro cell culture infectivity assay for human noroviruses. Emerging Infectious Diseases, 13, 396–403.CrossRefPubMedGoogle Scholar
  15. Wobus, C. E., Thackray, L. B., & Virgin, H. B., IV (2006). Murine norovirus: a model system to study norovirus biology and pathogenesis. Journal of Virology, 80, 5104–5112.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science + Business Media, LLC 2009

Authors and Affiliations

  • David H. Kingsley
    • 1
  • Kevin Calci
    • 2
  • Sheila Holliman
    • 3
  • Brooke Dancho
    • 1
  • George Flick
    • 3
  1. 1.U.S. Department of Agriculture, Agricultural Research Service, Microbial Food Safety Research UnitJames W. W. Baker Center, Delaware State UniversityDoverUSA
  2. 2.Gulf Coast Seafood LaboratoryUS Food and Drug AdministrationDauphin IslandUSA
  3. 3.Department of Food Science and TechnologyVirginia Polytechnic Institute and State UniversityBlacksburgUSA

Personalised recommendations