Food and Environmental Virology

, Volume 1, Issue 1, pp 31–36

Enteric Viruses in a Large Waterborne Outbreak of Acute Gastroenteritis in Finland

  • L. Maunula
  • P. Klemola
  • A. Kauppinen
  • K. Söderberg
  • T. Nguyen
  • T. Pitkänen
  • S. Kaijalainen
  • M. L. Simonen
  • I. T. Miettinen
  • M. Lappalainen
  • J. Laine
  • R. Vuento
  • M. Kuusi
  • M. Roivainen
Original Paper

Abstract

In Nokia city about 450,000 l of treated sewage water was for 2 days allowed to run into the drinking water supplies of the city due to a personal error of one employee. Within the next 5 weeks about 1,000 people sought care at the municipal health centre or regional hospital because of gastroenteritis. Here we report the results of viral analyses performed by gene amplification assays from the earliest water and sewage samples as well as from close to 300 patient samples. The contaminating treated sewage was shown to harbour several enteric viruses known to cause acute gastroenteritis. Likewise, the drinking water sample was positive for noro-, astro-, rota-, entero- and adenoviruses. Noroviruses were also found in 29.8% of stool samples from affected patients, while astro-, adeno-, rota- and enteroviruses were detected in 19.7, 18.2, 7.5 and 3.7% of the specimens, respectively.

Keywords

RT-PCR Real-time RT-PCR Enteric viruses Norovirus Astrovirus Rotavirus Enterovirus Adenovirus Hepatitis A virus Waterborne outbreak 

References

  1. Atmar, R. L., Opekun, A. R., Gilger, M. A., Estes, M. K., Crawford, S. E., Neill, F. H., et al. (2008). Norwalk virus shedding after experimental human infection. Emerging Infectious Diseases, 14(10), 1553–1557.PubMedCrossRefGoogle Scholar
  2. Beller, M., Ellis, A., Lee, S. H., Drebot, M. A., Jenkerson, S. A., Funk, E., et al. (1997). Outbreak of viral gastroenteritis due to a contaminated well. International consequences. JAMA, 278, 563–568.PubMedCrossRefGoogle Scholar
  3. Blomqvist, S., Skyttä, A., Roivainen, M., & Hovi, T. (1999). Rapid detection of human rhinoviruses in nasopharyngeal aspirates by a microwell reverse transcription-PCR-hybridization assay. Journal of Clinical Microbiology, 37(9), 2813–2816.PubMedGoogle Scholar
  4. Bosch, A., Guix, S., Sano, D., & Pintó, R. M. (2008). New tools for the study and direct surveillance of viral pathogens in water. Current Opinion in Biotechnology, 19, 295–301.PubMedCrossRefGoogle Scholar
  5. Costafreda, M. I., Bosch, A., & Pintó, R. M. (2006). Development, evaluation, and standardization of a real-time TaqMan reverse transcription-PCR assay for quantification of hepatitis A virus in clinical and shellfish samples. Applied Environmental Microbiology, 72, 3846–3855.CrossRefGoogle Scholar
  6. Dahling, D. R., & Safferman, R. S. (1979). Survival of enteric viruses under natural conditions in a subarctic river. Applied Environmental Microbiology, 38, 1103–1110.Google Scholar
  7. Enriquez, C. (2002). Adenoviruses. In G. Bitton (Ed.), Encyclopedia of environmental microbiology (Vol. 1, pp. 92–100). USA: Wiley.Google Scholar
  8. Gilgen, M. D. G., Lüthy, J., & Hübner, P. (1997). Three-step isolation method for sensitive detection of enterovirus, rotavirus, hepatitis A virus, and small round structured viruses in water samples. International Journal of Food Microbiology, 37, 189–199.PubMedCrossRefGoogle Scholar
  9. Gouvea, V., Glass, R. I., Woods, P., Taniguchi, K., Clark, H. F., Forrester, B., et al. (1990). Polymerase chain reaction amplification and typing of rotavirus nucleic acid from stool specimens. Journal of Clinical Microbiology, 28(2), 276–282.PubMedGoogle Scholar
  10. Gutiérrez-Aguirre, I., Steyer, A., Boben, J., Gruden, K., Poljsak-Prijatelj, M., & Ravnikar, M. (2008). Sensitive detection of multiple rotavirus genotypes with a single RT-qPCR assay. Journal of Clinical Microbiology, 46(8), 2547–2554. (Epub 4 Jun 2008).PubMedCrossRefGoogle Scholar
  11. Harris, J. P., Edmunds, W. J., Pebody, R., Brown, D. W., & Lopman, B. A. (2008). Deaths from norovirus among the elderly, England and Wales. Emerging Infectious Diseases, 14(10), 1546–1552.PubMedCrossRefGoogle Scholar
  12. Hoebe, C. J., Vennema, H., de Roda Husman, A. M., & van Duynhoven, Y. T. (2004). Norovirus outbreak among primary schoolchildren who had played in a recreational water fountain. Journal of Infectious Diseases, 189(4), 699–705.PubMedCrossRefGoogle Scholar
  13. Iturriza-Gomara, M., Kang, G., & Gray, J. (2004). Rotavirus genotyping: Keeping up with an evolving population of human rotaviruses. Journal of Clinical Virology, 31, 259–265.PubMedCrossRefGoogle Scholar
  14. Jiang, X., Wang, J., Graham, D. Y., & Estes, M. (1992). Detection of Norwalk virus in stool by polymerase chain reaction. Journal of Clinical Virology, 30, 2529–2534.Google Scholar
  15. Jothikumar, N., Cromeans, T. L., Hill, V. R., Lu, X., Sobsey, M. D., & Erdman, D. D. (2005). Quantitative real-time PCR assays for detection of human adenoviruses and identification of serotypes 40 and 41. Applied Environmental Microbiology, 71(6), 3131–3136.CrossRefGoogle Scholar
  16. Kageyama, T., Kojima, S., Shinohara, M., Uchida, K., Fukushi, S., Hoshino, F. B., et al. (2003). Broadly reactive and highly sensitive assay for Norwalk-like viruses based on real-time quantitative reverse transcription-PCR. Journal of Clinical Microbiology, 41(4), 1548–1557.PubMedCrossRefGoogle Scholar
  17. Kim, S. H., Cheon, D. S., Kim, J. H., Lee, D. H., Jheong, W. H., Heo, Y. J., et al. (2005). Outbreaks of gastroenteritis that occurred during school excursions in Korea were associated with several waterborne strains of norovirus. Journal of Clinical Microbiology, 43(9), 4836–4839.PubMedCrossRefGoogle Scholar
  18. Koopmans, M. (2008). Progress in understanding norovirus epidemiology. Current Opinion in Infectious Diseases, 21, 544–552.PubMedCrossRefGoogle Scholar
  19. Koopmans, M., von Bonsdorff, C. H., Vinje, J., de Medici, D., & Monroe, S. (2002). Foodborne viruses. FEMS Microbiology Reviews, 26, 187–205.PubMedGoogle Scholar
  20. Le Cann, P., Ranarijaona, S., Monpoeho, S., Le Guyader, F., & Ferre, V. (2004). Quantification of human astroviruses in sewage using real-time RT-PCR. Research in Microbiology, 155, 11–15.PubMedCrossRefGoogle Scholar
  21. Leclerc, H., Schwartzbrod, L., & Dei-Cas, E. (2002). Microbial agents associated with waterborne disease. Critical Reviews in Microbiology, 28, 371–409.PubMedCrossRefGoogle Scholar
  22. Loisy, F., Atmar, R. L., Guillon, P., Le Cann, P., Pommepuy, M., & Le Guyader, F. S. (2005). Real-time RT-PCR for norovirus screening in shellfish. Journal of Virological Methods, 123, 1–7.PubMedCrossRefGoogle Scholar
  23. Lopman, B., Vennema, H., Kohli, E., Pothier, P., Sanchez, A., Negredo, A., et al. (2004). Increase in viral gastroenteritis outbreaks in Europe and epidemic spread of new norovirus variant. Lancet, 363(9410), 671–672.CrossRefGoogle Scholar
  24. Maunula, L. (2007). Waterborne norovirus outbreaks—a review. Future Virology, 2(1), 101–112.CrossRefGoogle Scholar
  25. Maunula, L., Miettinen, I. T., & von Bonsdorff, C. H. (2005). Norovirus outbreaks from drinking water. Emerging Infectious Disease, 11, 1716–1721.Google Scholar
  26. Maunula, L., & von Bonsdorff, C. H. (2005). Norovirus genotypes causing gastroenteritis outbreaks in Finland 1998–2002. Journal of Clinical Virology, 34, 186–194.PubMedCrossRefGoogle Scholar
  27. Symes, S. J., Gunesekere, I. C., Marshall, J. A., & Wright, P. J. (2007). Norovirus mixed infection in an oyster-associated outbreak: An opportunity for recombination. Archives of Virology, 152(6), 1075–1086.PubMedCrossRefGoogle Scholar
  28. Van den Berg, H., Lodder, W., van der Poel, W., Vennema, H., & de Roda Husman, A. M. (2005). Genetic diversity of noroviruses in raw and treated sewage water. Research in Microbiology, 156, 532–540.PubMedCrossRefGoogle Scholar
  29. Vinje, J., Hamidjaja, R. A., & Sobsey, M. D. (2004). Development and application of a capsid VP1 (region D) based reverse transcription PCR assay for genotyping of genogroup I and II noroviruses. Journal of Virological Methods, 116, 109–117.PubMedCrossRefGoogle Scholar
  30. Werle, E., Schneider, C., Renner, M., Völker, M., & Fiehn, W. (1994). Convenient single-step, one tube purification of PCR products for direct sequencing. Nucleic Acids Research, 22(20), 4354–4355.PubMedCrossRefGoogle Scholar
  31. Wyn-Jones, A., & Sellwood, J. (2001). Enteric viruses in the aquatic environment. Journal of Applied Microbiology, 91, 945–962.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media, LLC 2008

Authors and Affiliations

  • L. Maunula
    • 1
  • P. Klemola
    • 2
  • A. Kauppinen
    • 2
  • K. Söderberg
    • 1
  • T. Nguyen
    • 2
  • T. Pitkänen
    • 2
  • S. Kaijalainen
    • 2
  • M. L. Simonen
    • 2
  • I. T. Miettinen
    • 2
  • M. Lappalainen
    • 3
  • J. Laine
    • 2
    • 4
  • R. Vuento
    • 5
  • M. Kuusi
    • 2
  • M. Roivainen
    • 2
  1. 1.Department of Food and Environmental Hygiene, Faculty of Veterinary MedicineUniversity of HelsinkiHelsinkiFinland
  2. 2.National Public Health InstituteKuopioFinland
  3. 3.Laboratory Division (HUSLAB), Department of VirologyHelsinki University Central HospitalHelsinkiFinland
  4. 4.Tampere University HospitalTampereFinland
  5. 5.Centre for Laboratory MedicineTampere University HospitalTampereFinland

Personalised recommendations