Advertisement

Cognitive Computation

, Volume 11, Issue 5, pp 719–734 | Cite as

Rank-Based Gravitational Search Algorithm: a Novel Nature-Inspired Optimization Algorithm for Wireless Sensor Networks Clustering

  • Sepehr Ebrahimi Mood
  • Mohammad Masoud JavidiEmail author
Article
  • 38 Downloads

Abstract

Recently, wireless sensor networks (WSNs) have had many real-world applications; they have thus become one of the most interesting areas of research. The network lifetime is a major challenge researched on this topic with clustering protocols being the most popular method used to deal with this problem. Determination of the cluster heads is the main issue in this method. Cognitively inspired swarm intelligence algorithms have attracted wide attention in the researh area of clustering since it can give machines the ability to self-learn and achieve better performance. This paper presents a novel nature-inspired optimization algorithm based on the gravitational search algorithm (GSA) and uses this algorithm to determine the best cluster heads. First, the authors propose a rank-based definition for mass calculation in GSA. They also introduce a fuzzy logic controller (FLC) to compute the parameter of this method automatically. Accordingly, this algorithm is user independent. Then, the proposed algorithm is used in an energy efficient clustering protocol for WSNs. The proposed search algorithm is evaluated in terms of some standard test functions. The results suggest that this method has a better performance than other state-of-the-art optimization algorithms. In addition, simulation results indicate that the proposed clustering method outperforms other popular clustering method for WSNs. The proposed method is a novel way to control the exploration and exploitation abilities of the algorithm with simplicity in implementation; therefore, it has a good performance in some real-world applications such as energy efficient clustering in WSNs.

Keywords

Wireless sensor network (WSN) Energy efficient protocol Clustering method Gravitational search algorithm (GSA) Rank-based selection Fuzzy logic controller (FLC) 

Notes

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

Informed Consent

Informed consent was not required as no human or animals were involved.

Human and Animal Rights

This article does not contain any studies with human or animal subjects performed by any of the authors.

References

  1. 1.
    Tang W, Wu Q. Biologically inspired optimization: a review. Trans Inst Meas Control. 2009;31(6):495–515.Google Scholar
  2. 2.
    Molina D, LaTorre A, Herrera F. An insight into bio-inspired and evolutionary algorithms for global optimization: review, analysis, and lessons learnt over a decade of competitions. Cogn Comput. 2018;10:517–44.Google Scholar
  3. 3.
    Al-Rifaie MM, Bishop JM, Caines S. Creativity and autonomy in swarm intelligence systems. Cogn Comput. 2012;4(3):320–31.Google Scholar
  4. 4.
    Bishop JM, Erden YJ. Computational creativity, intelligence and autonomy. Cogn Comput. 2012;4(3):209–11.Google Scholar
  5. 5.
    Song B, Wang Z, Zou L. On global smooth path planning for mobile robots using a novel multimodal delayed PSO algorithm. Cogn Comput. 2017;9(1):5–17.Google Scholar
  6. 6.
    Kim S-S, McLoone S, Byeon JH, Lee S, Liu H. Cognitively inspired artificial bee colony clustering for cognitive wireless sensor networks. Cogn Comput. 2017;9(2):207–24.Google Scholar
  7. 7.
    Tang Q, Shen Y, Hu C, Zeng J, Gong W. Swarm intelligence: based cooperation optimization of multi-modal functions. Cogn Comput. 2013;5(1):48–55.Google Scholar
  8. 8.
    Siddique N, Adeli H. Nature-inspired chemical reaction optimisation algorithms. Cogn Comput. 2017;9(4):411–22.Google Scholar
  9. 9.
    Chakraborty S, Dey N, Samanta S, Ashour AS, Barna C, Balas MM. Optimization of non-rigid demons registration using cuckoo search algorithm. Cogn Comput. 2017;9(6):817–26.Google Scholar
  10. 10.
    Zhang A et al. Clustering of remote sensing imagery using a social recognition-based multi-objective gravitational search algorithm. Cogn Comput, 2018: 1–10.Google Scholar
  11. 11.
    Nisar S et al. Cognitively inspired feature extraction and speech recognition for automated hearing loss testing. Cogn Comput, 2019: 1–14.Google Scholar
  12. 12.
    Ghanem WA, Jantan A. A cognitively inspired hybridization of artificial bee colony and dragonfly algorithms for training multi-layer perceptrons. Cogn Comput. 2018;10(6):1096–134.Google Scholar
  13. 13.
    Rashedi E, Nezamabadi-Pour H, Saryazdi S. GSA: a gravitational search algorithm. Inf Sci. 2009;179(13):2232–48.Google Scholar
  14. 14.
    Rashedi E, Nezamabadi-Pour H, Saryazdi S. BGSA: binary gravitational search algorithm. Nat Comput. 2010;9(3):727–45.Google Scholar
  15. 15.
    Rashedi E, Rashedi E, Nezamabadi-pour H. A comprehensive survey on gravitational search algorithm. Swarm and evolutionary computation, 2018Google Scholar
  16. 16.
    Shams M, Rashedi E, Hakimi A. Clustered-gravitational search algorithm and its application in parameter optimization of a low noise amplifier. Appl Math Comput. 2015;258:436–53.Google Scholar
  17. 17.
    Doraghinejad M, Nezamabadi-pour H. Black hole: a new operator for gravitational search algorithm. Int J Comput Intell Syst. 2014;7(5):809–26.Google Scholar
  18. 18.
    Kherabadi HA, Mood SE, Javidi MM. Mutation: a new operator in gravitational search algorithm using fuzzy controller. Cybernet Inform Technol. 2017;17(1):72–86.Google Scholar
  19. 19.
    Valdez F, Melin P, Castillo O. A survey on nature-inspired optimization algorithms with fuzzy logic for dynamic parameter adaptation. Expert Syst Appl. 2014;41(14):6459–66.Google Scholar
  20. 20.
    Valdez F, Melin P, Castillo O. An improved evolutionary method with fuzzy logic for combining particle swarm optimization and genetic algorithms. Appl Soft Comput. 2011;11(2):2625–32.Google Scholar
  21. 21.
    Chang B-M, Tsai H-H, Shih J-S. Using fuzzy logic and particle swarm optimization to design a decision-based filter for cDNA microarray image restoration. Eng Appl Artif Intell. 2014;36:12–26.Google Scholar
  22. 22.
    Mood S, Rasshedi E, Javidi M. New functions for mass calculation in gravitational search algorithm. J Comput Sec. 2016. 2(3).Google Scholar
  23. 23.
    Modieginyane KM, Letswamotse BB, Malekian R, Abu-Mahfouz AM. Software defined wireless sensor networks application opportunities for efficient network management: A survey. Computers & Electrical Engineering. 2018 Feb 1;66:274-87.Google Scholar
  24. 24.
    Nie F, Zeng Z, Tsang IW, Xu D, Zhang C. Spectral embedded clustering: a framework for in-sample and out-of-sample spectral clustering. IEEE Trans Neural Netw. 2011;22(11):1796–808.PubMedGoogle Scholar
  25. 25.
    Heinzelman WR, Chandrakasan A, Balakrishnan H. Energy-efficient communication protocol for wireless microsensor networks. In System sciences, 2000. Proceedings of the 33rd annual Hawaii international conference on. 2000. IEEE.Google Scholar
  26. 26.
    Muruganathan SD, Ma DCF, Bhasin RI, Fapojuwo AO. A centralized energy-efficient routing protocol for wireless sensor networks. IEEE Commun Mag. 2005;43(3):S8–13.Google Scholar
  27. 27.
    Pradhan N, Sharma K, Singh VK. A survey on hierarchical clustering algorithm for wireless sensor networks. Energy. 2016;134(4):30–5.Google Scholar
  28. 28.
    Curry RM, Smith JC. A survey of optimization algorithms for wireless sensor network lifetime maximization. Comput Ind Eng. 2016;101:145–66.Google Scholar
  29. 29.
    Latiff NA, Tsimenidis CC, Sharif BS. Energy-aware clustering for wireless sensor networks using particle swarm optimization. Personal, Indoor and Mobile Radio Communications, 2007. PIMRC 2007. IEEE 18th International Symposium on. 2007. IEEE.Google Scholar
  30. 30.
    Mirhosseini M, Barani F, Nezamabadi-pour H. QQIGSA: a quadrivalent quantum-inspired GSA and its application in optimal adaptive design of wireless sensor networks. J Netw Comput Appl. 2017;78:231–41.Google Scholar
  31. 31.
    Bäck T, Hoffmeister F. Extended selection mechanisms in genetic algorithms. 1991.Google Scholar
  32. 32.
    Blickle T, Thiele L. A comparison of selection schemes used in genetic algorithms. 1995, TIK-report.Google Scholar
  33. 33.
    Whitley LD. The genitor algorithm and selection pressure: why rank-based allocation of reproductive trials is best. in ICGA. 1989. Fairfax, VA.Google Scholar
  34. 34.
    Yao X, Liu Y, Lin G. Evolutionary programming made faster. IEEE Trans Evol Comput. 1999;3(2):82–102.Google Scholar
  35. 35.
    Sastry K, Goldberg D, Kendall G. Genetic algorithms, in Search methodologies. 2005, Springer. 97–125.Google Scholar
  36. 36.
    Friedman M. The use of ranks to avoid the assumption of normality implicit in the analysis of variance. J Am Stat Assoc. 1937;32(200):675–701.Google Scholar
  37. 37.
    García S, Fernández A, Luengo J, Herrera F. Advanced nonparametric tests for multiple comparisons in the design of experiments in computational intelligence and data mining: experimental analysis of power. Inf Sci. 2010;180(10):2044–64.Google Scholar
  38. 38.
    Abdi, H., Binomial distribution: binomial and sign tests. Encyclopedia of measurement and statistics, 2007. 1.Google Scholar
  39. 39.
    Zhang J, Sanderson AC. JADE: adaptive differential evolution with optional external archive. IEEE Trans Evol Comput. 2009;13(5):945–58.Google Scholar
  40. 40.
    Shi Y, Eberhart R. A modified particle swarm optimizer. In Evolutionary Computation Proceedings, 1998. IEEE World Congress on Computational Intelligence., The 1998 IEEE International Conference on. 1998. IEEE.Google Scholar
  41. 41.
    Tsai H-C, Tyan YY, Wu YW, Lin YH. Gravitational particle swarm. Appl Math Comput. 2013;219(17):9106–17.Google Scholar
  42. 42.
    Sarafrazi S, Nezamabadi-Pour H, Saryazdi S. Disruption: a new operator in gravitational search algorithm. Scientia Iranica. 2011;18(3):539–48.Google Scholar
  43. 43.
    Li X, Engelbrecht A, Epitropakis MG. Benchmark functions for CEC’2013 special session and competition on niching methods for multimodal function optimization. RMIT University, Evolutionary Computation and Machine Learning Group, Australia, Tech. Rep, 2013.Google Scholar
  44. 44.
    Liang J et al. Problem definitions and evaluation criteria for the CEC 2013 special session on real-parameter optimization. Computational Intelligence Laboratory, Zhengzhou University, Zhengzhou, China and Nanyang Technological University, Singapore, Technical Report, 2013. 201212: 3–18.Google Scholar
  45. 45.
    Rodríguez-Fdez I et al. STAC: a web platform for the comparison of algorithms using statistical tests. In Fuzzy Systems (FUZZ-IEEE), 2015 IEEE International Conference on. 2015. IEEE.Google Scholar
  46. 46.
    An J, Kang Q, Wang L, Wu Q. Mussels wandering optimization: an ecologically inspired algorithm for global optimization. Cogn Comput. 2013;5(2):188–99.Google Scholar
  47. 47.
    Eberhart R, Kennedy J. A new optimizer using particle swarm theory. In Micro Machine and Human Science, 1995. MHS ’95., Proceedings of the Sixth International Symposium on. 1995. IEEE.Google Scholar
  48. 48.
    He S, Wu QH, Saunders J. Group search optimizer: an optimization algorithm inspired by animal searching behavior. IEEE Trans Evol Comput. 2009;13(5):973–90.Google Scholar
  49. 49.
    Kumar S. Energy efficient clustering algorithm for WSN. In Signal Processing and Integrated Networks (SPIN), 2015 2nd International Conference on. 2015. IEEE.Google Scholar
  50. 50.
    Mekonnen MT, Rao KN. Cluster optimization based on metaheuristic algorithms in wireless sensor networks. Wirel Pers Commun. 2017;97(2):2633–47.Google Scholar
  51. 51.
    RejinaParvin J, Vasanthanayaki C. Particle swarm optimization-based clustering by preventing residual nodes in wireless sensor networks. IEEE Sensors J. 2015;15(8):4264–74.Google Scholar
  52. 52.
    Kennedy J. Particle swarm optimization. Encyclopedia of machine learning. 2011, Springer. 760–766.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Computer Science, Faculty of Mathematics and ComputerShahid Bahonar University of KermanKermanIran

Personalised recommendations