Advertisement

Cognitive Computation

, Volume 8, Issue 6, pp 1027–1035 | Cite as

Contour Detection in Colour Images Using a Neurophysiologically Inspired Model

  • Qi Wang
  • M. W. Spratling
Article

Abstract

Background

The predictive coding/biased competition (PC/BC) model of V1 has previously been applied to locate boundaries defined by local discontinuities in intensity within an image.

Objective

Here PC/BC is extended to perform contour detection for colour images. Methods The proposed extensions are inspired by neurophysiological data from single neurons in macaque primary visual cortex (V1).

Results

The behaviour of this extended model is consistent with the neurophysiological experimental results. Furthermore, when compared to methods used for contour detection in computer vision, the colour PC/BC model of V1 slightly outperforms some recently proposed algorithms which use more cues and/or require a complicated training procedure.

Conclusions

The colour PC/BC model of V1 can successfully simulate the responses properties of orientation-selective double-opponent neuron in macaque V1 and has practical applications for contour detection in natural images.

Keywords

Cue integration Edge detection Contour detection Colour image segmentation Predictive coding Primary visual cortex 

Notes

Compliance with Ethical Standards

Conflict of interest

Qi Wang and Michael Spratling declare that they have no conflict of interest.

Informed Consent

Informed consent was not required as no human or animals were involved.

Human and Animal Rights

This article does not contain any studies with human or animal subjects performed by any of the authors.

References

  1. 1.
    Walther DB, Chai B, Caddigan E, Beck DM, Fei-Fei L. Simple line drawings suffice for functional MRI decoding of natural scene categories. Proc Natl Acad Sci. 2011;108(23):9661–6.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Arbelaez P, Maire M, Fowlkes C, Malik J. Contour detection and hierarchical image segmentation. IEEE Trans Pattern Anal Mach Intell. 2011;33:898–916.CrossRefPubMedGoogle Scholar
  3. 3.
    Lowe DG. Object recognition from local scale-invariant features. In: The proceedings of the seventh IEEE international conference on computer vision, 1999, vol 2, pp 1150–1157.Google Scholar
  4. 4.
    Comport A, Marchand É, Chaumette F. Robust model-based tracking for robot vision. In: The proceedings of IEEE/RSJ international conference on intelleligence robots and systems, 2004, vol 1, pp 692–697.Google Scholar
  5. 5.
    Chalana V, Linker DT, Haynor DR, Kim Y. A multiple active contour model for cardiac boundary detection on echocardiographic sequences. IEEE Trans Med Imaging. 1996;15:290–8.CrossRefPubMedGoogle Scholar
  6. 6.
    Canny J. A computational approach to edge detection. IEEE Trans Pattern Anal Mach Intell. 1986;8:679–98.CrossRefPubMedGoogle Scholar
  7. 7.
    Perez F, Koch C. Toward color image segmentation in analog VLSI: algorithm and hardware. Int J Comput Vis. 1994;12:17–42.CrossRefGoogle Scholar
  8. 8.
    Martin DR, Fowlkes CC, Malik J. Learning to detect natural image boundaries using local brightness, color and texture cues. IEEE Trans Pattern Anal Mach Intell. 2004;26(5):530–49.CrossRefPubMedGoogle Scholar
  9. 9.
    Mairal J, Leordeanu M, Bach F, Hebert M, Ponce J. Discriminative sparse image models for class-specific edge detection and image interpretation. Computer vision-ECCV2008, vol 5304, pp 43–56. Berlin: Springer; 2008Google Scholar
  10. 10.
    Mairal J, Elad M, Sapiro G. Sparse representation for color image restoration. IEEE Trans Image Process. 2008;17:53–69.CrossRefPubMedGoogle Scholar
  11. 11.
    Spratling MW. Predictive coding as a model of response properties in cortical area V1. J Neurosci. 2010;30:3531–43.CrossRefPubMedGoogle Scholar
  12. 12.
    Spratling MW. Image segmentation using a sparse coding model of cortical area V1. IEEE Trans Image Process. 2013;22(4):1631–43.CrossRefPubMedGoogle Scholar
  13. 13.
    Johnson EN, Hawken MJ, Shapley R. The spatial transformation of color in the primary visual cortex of the macaque monkey. Nat Neurosci. 2001;4:409–16.CrossRefPubMedGoogle Scholar
  14. 14.
    Johnson EN, Hawken MJ, Shapley R. The orientation selectivity of colour-responsive neurons in macaque V1. J Neurosci. 2008;28:8096–106.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Yang KF, Gao S, Guo C, Li C, Li Y. Boundary detection using double-opponency and spatial sparseness constraint. IEEE Trans Image Process. 2015;24:2565–78.CrossRefGoogle Scholar
  16. 16.
    Martin D, Fowlkes C, Tal D, Malik J. A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics. Proc Int Conf Comput Vis. 2001;2:416–23.Google Scholar
  17. 17.
    Burghouts GJ, Geusebroek JM. Performance evaluation of local colour invariants. Comput Vis Image Underst. 2009;113:48–62.CrossRefGoogle Scholar
  18. 18.
    Van De Sande KEA, Gevers T, Snoek CGM. Evaluating color descriptors for object and scene recognition. IEEE Trans Pattern Anal Mach Intell. 2010;32:1582–96.CrossRefPubMedGoogle Scholar
  19. 19.
    Linde O, Lindeberg T. Composed complex-cue histograms: an investigation of the information content in receptive field based image descriptors for object recognition. Comput Vis Image Underst. 2012;116:538–60.CrossRefGoogle Scholar
  20. 20.
    Arbelaez P, Maire M, Fowlkes C, Malik J. Contour detection and hierarchical image segmentation. IEEE Trans Pattern Anal Mach Intell. 2011;33:898–916.CrossRefPubMedGoogle Scholar
  21. 21.
    Shapley R, Hawken MJ. Colour in the cortex: single-and double-opponent cells. Vis Res. 2011;51:701–17.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Beaudot WH, Mullen KT. Orientation selectivity in luminance and color vision assessed using 2-d band-pass filtered spatial noise. Vis Res. 2005;45:687–96.CrossRefPubMedGoogle Scholar
  23. 23.
    Gegenfurtner KR. Cortical mechanisms of color vision. Nat Rev Neurosci. 2003;4:563–72.CrossRefPubMedGoogle Scholar
  24. 24.
    Leventhal AG, Thompson KG, Liu D, Zhou Y, Ault SJ. Concomitant sensitivity to orientation, direction, and color of cells in layers 2, 3, and 4 of monkey striate cortex. J Neurosci. 1995;15:1808–18.PubMedGoogle Scholar
  25. 25.
    Friedman HS, Zhou H, Heydt R. The coding of uniform color figures in monkey visual cortex. J Physiol. 2003;548:593–613.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Caywood MS, Willmore B, Tolhurst DJ. Independent components of color natural scenes resemble V1 neurons in their spatial and colour tuning. J Neurophysiol. 2004;91:2859–73.CrossRefPubMedGoogle Scholar
  27. 27.
    Girard P, Morrone MC. Spatial structure of chromatically opponent receptive fields in the human visual system. Vis Neurosci. 1995;12:103–16.CrossRefPubMedGoogle Scholar
  28. 28.
    Ringach DL. Spatial structure and symmetry of simple-cell receptive fields in macaque primary visual cortex. J Neurophysiol. 2002;88:455–63.PubMedGoogle Scholar
  29. 29.
    Lennie P, Movshon JA. Coding of color and form in the geniculostriate visual pathway (invited review). JOSA A. 2005;22(10):2013–33.CrossRefPubMedGoogle Scholar
  30. 30.
    Lennie P, Krauskopf J, Sclar G. Chromatic mechanisms in striate cortex of macaque. J Neurosci. 1990;10:649–69.PubMedGoogle Scholar
  31. 31.
    Johnson EN, Hawken MJ, Shapley R. Cone inputs in macaque primary visual cortex. J Neurophysiol. 2004;91:2501–14.CrossRefPubMedGoogle Scholar
  32. 32.
    Mullen KT, Dumoulin SO, McMahon KL, De Zubicaray GI, Hess RF. Selectivity of human retinotopic visual cortex to S-cone-opponent, L/M-cone-opponent and achromatic stimulation. Eur J Neurosci. 2007;25:491–502.CrossRefPubMedGoogle Scholar
  33. 33.
    Johnson EN, Van Hooser SD, Fitzpatrick D. The representation of S-cone signals in primary visual cortex. J Neurosci. 2010;30:10337–50.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Lindeberg T. A computational theory of visual receptive fields. Biol Cybern. 2013;107:589–635.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Young AR, Lesperance RM. The gaussian derivative model for spatial-temporal vision: II cortical data. Spat Vis. 2001;14:321–89.CrossRefPubMedGoogle Scholar
  36. 36.
    Lindeberg T. Time-causal and time-recursive spatio-temporal receptive fields. J Math Imaging Vis. 2016;55:50–88.CrossRefGoogle Scholar
  37. 37.
    Lindeberg T. Generalized axiomatic scale-space theory. Adv Imaging Electron Phys. 2013;178:1–96.CrossRefGoogle Scholar
  38. 38.
    Hunt J, Bosking W, Goodhill G. Statistical structure of lateral connections in the primary visual cortex. Neural Syst Circuits. 2011;1(1):3.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Ren X. Multi-scale improves boundary detection in natural image. Computer vision-ECCV. 2008; pp 533–545.Google Scholar
  40. 40.
    Shi J, Malik J. Normalized cuts and image segmentation. IEEE Trans Pattern Anal Mach Intell. 2000;22:888–905.CrossRefGoogle Scholar
  41. 41.
    Maire M, Arbelaez P, Fowlkes C, Malik J. Using contours to detect and localize junctions in natural image. Comput Vis Pattern Recog. 2008; pp 1–8Google Scholar
  42. 42.
    Najman L, Schmitt M. Geodesic saliency of watershed contours and hierarchical segmentation. IEEE Trans Pattern Anal Mach Intell. 1996;18:1163–73.CrossRefGoogle Scholar
  43. 43.
    Arbelaez P. ‘Boundary extraction in natural images using ultrametric contour maps’. In: IEEE Conference on computer vision and pattern recognition Workshop, 2006, pp 182–182Google Scholar
  44. 44.
    Dollar P, Tu Z, Belongie S. Supervised learning of edges and object boundaries. In: 2006 IEEE computer society conference on computer vision and pattern recognition, vol 2, pp 1964–1971; 2006Google Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Department of InformaticsKing’s College LondonLondonUK

Personalised recommendations