Cognitive Computation

, Volume 7, Issue 5, pp 509–525 | Cite as

A Neural Network Model of Episode Representations in Working Memory

  • Martin TakacEmail author
  • Alistair Knott


We present a neural network model of the storage of episode representations in working memory (WM). Our key idea is that episodes are encoded in WM as prepared sensorimotor routines, i.e. as prepared sequences of attentional and motor operations. Our network reproduces several experimental findings about the representation of prepared sequences in prefrontal cortex. Interpreted as a model of WM episode representations, it has useful applications in an account of long-term memory for episodes and in accounts of sentence processing.


Working memory Neural network modelling Sequence learning Action preparation Language processing 



This research was supported by NZ Marsden Fund, and partially supported by grants VEGA 1/0898/14 and KEGA 076UK-4/2013 for Martin Takac. We are grateful to Lubica Benuskova and Igor Farkas for helpful discussions.


  1. 1.
    Baddeley A, Hitch G. Working memory. In: Bower G, editor. The psychology of learning and motivation: advances in research and theory (Vol. 8). New York: Academic Press; 1974. p. 47–90.Google Scholar
  2. 2.
    Baddeley A. The episodic buffer: a new component of working memory? TICS. 2000;4(11):417–23.Google Scholar
  3. 3.
    Tulving E, Markowitsch H. Episodic and declarative memory: role of the hippocampus. Hippocampus. 1998;8:198–204.CrossRefPubMedGoogle Scholar
  4. 4.
    Abraham W, Logan B, Greenwood J, Dragunow M. Induction and experience-dependent consolidation of stable long-term potentiation lasting months in the hippocampus. J Neurosci. 2002;22:9626–34.PubMedGoogle Scholar
  5. 5.
    Levelt W. Speaking: from intention to articulation. Cambridge: MIT Press; 1989.Google Scholar
  6. 6.
    Haarmann H, Cameron K, Ruchkin D. Short-term semantic retention during on-line sentence comprehension. Brain potential evidence from filler-gap constructions. Cognit Brain Res. 2003;15:178–90.CrossRefGoogle Scholar
  7. 7.
    Mayberry M, Miikkulainen R. Incremental nonmonotonic sentence interpretation through semantic self-organization. The University of Texas at Austin: Department of Computer Sciences; 2008; AI08–12.Google Scholar
  8. 8.
    Ballard D, Hayhoe M, Pook P, Rao R. Deictic codes for the embodiment of cognition. Behav Brain Sci. 1997;20(4):723–67.PubMedGoogle Scholar
  9. 9.
    Knott A. Sensorimotor cognition and natural language syntax. Cambridge: MIT Press; 2012.Google Scholar
  10. 10.
    Knott A. Syntactic structures as descriptions of sensorimotor processes. Biolinguistics. 2014;8:1–52.Google Scholar
  11. 11.
    Wallenstein G, Eichenbaum H, Hasselmo M. The hippocampus as an associator of discontiguous events. Trends Neurosci. 1998;21:317–23.CrossRefPubMedGoogle Scholar
  12. 12.
    Lee A, Wilson M. Memory of sequential experience in the hippocampus during slow wave sleep. Neuron. 2002;36:1183–94.CrossRefPubMedGoogle Scholar
  13. 13.
    Cutsuridis V, Hasselmo M. Spatial memory sequence encoding and replay during modeled theta and ripple oscillations. Cognit Comput. 2011;3:554–74.CrossRefGoogle Scholar
  14. 14.
    Haggard P. Human volition: towards a neuroscience of will. Nat Rev Neurosci. 2008;9:934–46.CrossRefPubMedGoogle Scholar
  15. 15.
    Tessitore G, Prevete R, Catanzariti E, Tamburrini G. From motor to sensory processing in mirror neuron computational modelling. Biol Cybern. 2010;103:471–85.CrossRefPubMedGoogle Scholar
  16. 16.
    Chambon V, Wenke D, Fleming S, Prinz W, Haggard P. An online neural substrate for sense of agency. Cereb Cortex. 2012;23:1031–7.CrossRefPubMedGoogle Scholar
  17. 17.
    Tipper S, Lortie C, Baylis G. Selective reaching: evidence for action-centered attention. J Exp Psychol Hum Percept Perform. 1992;18:891–905.CrossRefPubMedGoogle Scholar
  18. 18.
    Johansson R, Westling G, Backstrom A, Flanagan J. Eye-hand coordination in object manipulation. J Neurosci. 2001;21(17):6917–32.PubMedGoogle Scholar
  19. 19.
    Caza G, Knott A. Pragmatic bootstrapping: a neural network model of vocabulary acquisition. Lang Learn Dev. 2012;8:1–23.CrossRefGoogle Scholar
  20. 20.
    Knott A. How infants learn word meanings and propositional attitudes: a neural network model. In: Hung TW, editor. Lang action. Berlin: Springer; 2014. p. 107–24.Google Scholar
  21. 21.
    Lee-Hand J, Knott A. A model of causative actions: from motor learning to syntactic structure. In: Proceedings of the 35th annual meeting of the cognitive science society. Berlin; 2013; p. 2849–2854.Google Scholar
  22. 22.
    Curtis C, D’Esposito M. Persistent activity in the prefrontal cortex during working memory. Trends Cognit Sci. 2003;7(9):415–23.CrossRefGoogle Scholar
  23. 23.
    Barsalou L. Grounded cognition. Ann Rev Psychol. 2008;59:617–45.CrossRefGoogle Scholar
  24. 24.
    Glenberg A, Gallese V. Action-based language: a theory of language acquisition, comprehension, and production. Cortex. 2012;48:905–22.CrossRefPubMedGoogle Scholar
  25. 25.
    Tulving E. Elements of episodic memory. New York: Oxford University Press; 1983.Google Scholar
  26. 26.
    Barone P, Joseph JP. Prefrontal cortex and spatial sequencing in macaque monkey. Exp Brain Res. 1989;78:447–64.CrossRefPubMedGoogle Scholar
  27. 27.
    Averbeck B, Chafee M, Crowe D, Georgopoulos A. Parallel processing of serial movements in prefrontal cortex. PNAS. 2002;99(20):13172–7.PubMedCentralCrossRefPubMedGoogle Scholar
  28. 28.
    Rhodes B, Bullock D, Verwey W, Averbeck B, Page M. Learning and production of movement sequences: behavioral, neurophysiological, and modeling perspectives. Hum Mov Sci. 2004;23:699–746.CrossRefPubMedGoogle Scholar
  29. 29.
    Averbeck B, Sohn J, Lee D. Activity in prefrontal cortex during dynamic selection of action sequences. Nat Neurosci. 2006;9(2):276–82.CrossRefPubMedGoogle Scholar
  30. 30.
    Shallice T, Burgess P. Deficits in strategy application following frontal lobe damage in man. Brain. 1991;114:727–41.CrossRefPubMedGoogle Scholar
  31. 31.
    Kaller C, Heinze K, Frenkel A, Läppchen C, Unterrainer J, Weiller C, et al. Differential impact of continuous theta-burst stimulation over left and right DLPFC on planning. Hum Brain Mapp. 2013;34:36–51.CrossRefPubMedGoogle Scholar
  32. 32.
    Ziemke T. What’s that thing called embodiment? In: Alterman R, Kirsh D, editors. Proceedings of the 25th Annual Conference of the Cognitive Science Society. Mahwah, NJ: Lawrence Erlbaum; 2003. p. 1134–9.Google Scholar
  33. 33.
    Kohonen T. Self-organized formation of topologically correct feature maps. Biol Cybern. 1982;43:59–69.CrossRefGoogle Scholar
  34. 34.
    Kahneman D, Treisman A, Gibbs B. The reviewing of object files: object-specific integration of information. Cognit Psychol. 1992;24:175–219.CrossRefPubMedGoogle Scholar
  35. 35.
    Hasegawa R, Matsumoto M, Mikami A. Search target selection in monkey prefrontal cortex. J Neurophysiol. 2000;84:1692–6.PubMedGoogle Scholar
  36. 36.
    Fix J, Rougier N, Alexandre F. A dynamic neural field approach to the covert and overt deployment of spatial attention. Cognit Comput. 2011;3:279–93.CrossRefGoogle Scholar
  37. 37.
    Takac M, Knott A. A revised neural network model of episode representations in working memory. Dept of Computer Science, University of Otago; 2014; OUCS-2014-03.Google Scholar
  38. 38.
    Strickert M, Hammer B. Merge SOM for temporal data. Neurocomputing. 2005;64:39–71.CrossRefGoogle Scholar
  39. 39.
    Mayr U, Keele S. Changing internal constraints on action: the role of backward inhibition. J Exp Psychol Gen. 2000;129(1):4–26.CrossRefPubMedGoogle Scholar
  40. 40.
    Vickers D, Lee MD. Dynamic models of simple judgments: II. Properties of a self-organizing PAGAN (parallel, adaptive, generalized accumulator network) model for multi-choice tasks. Nonlinear Dyn Psychol Life Scie. 2000;4(1):1–31.CrossRefGoogle Scholar
  41. 41.
    James DL, Miikkulainen R. SARDNET: a self-organizing feature map for sequences. In: Tesauro G, Touretzky DS, Leen TK, editors. Advances in neural information processing systems 7. Cambridge: MIT Press; 1995. p. 577–84.Google Scholar
  42. 42.
    Miikkulainen R. Subsymbolic case-role analysis of sentences with embedded clauses. Cognit Sci. 1996;20:47–73.CrossRefGoogle Scholar
  43. 43.
    Chang F. Symbolically speaking: a connectionist model of sentence production. Cognit Sci. 2002;26:609–51.CrossRefGoogle Scholar
  44. 44.
    Rohde D. A connectionist model of sentence comprehension and production. School of Computer Science. Carnegie Mellon University; 2002.Google Scholar
  45. 45.
    Takac M, Benuskova L, Knott A. Mapping sensorimotor sequences to word sequences: a connectionist model of language acquisition and sentence generation. Cognition. 2012;125:288–308.CrossRefPubMedGoogle Scholar
  46. 46.
    Collins M. A new statistical parser based on bigram lexical dependencies. In: Proceedings of the 34th meeting of the ACL. Santa Cruz; 1996; p. 184–191.Google Scholar
  47. 47.
    Dispaldro M, Leonard L, Corradi N, Ruffino M, Bronte T, Facoetti A. Visual attentional engagement deficits in children with specific language impairment and their role in real-time language processing. Cortex. 2013;49:2126–39.PubMedCentralCrossRefPubMedGoogle Scholar
  48. 48.
    Balconi M. Dorsolateral prefrontal cortex, working memory and episodic memory processes: insight through transcranial magnetic stimulation techniques. Neurosci Bull. 2013;29(3):381–9.CrossRefPubMedGoogle Scholar
  49. 49.
    Burgess N, Hitch G. Memory for serial order: a network model of the phonological loop and its timing. Psychol Rev. 1999;106:551–81.CrossRefGoogle Scholar
  50. 50.
    Burgess N, Hitch G. A revised model of short-term memory and long-term learning of verbal sequences. J Mem Lang. 2006;55(4):627–52.CrossRefGoogle Scholar
  51. 51.
    Brown GDA, Hulme C, Preece T. Oscillator-based memory for serial order. Psychol Rev. 2000;107:127–81.CrossRefPubMedGoogle Scholar
  52. 52.
    Howard M, Kahana M. A distributed representation of temporal context. J Math Psychol. 2002;46:269–99.CrossRefGoogle Scholar
  53. 53.
    Page M, Norris D. A model linking immediate serial recall, the Hebb repetition effect and the learning of phonological word forms. Philos Trans R Soc B. 2009;364:3737–53.CrossRefGoogle Scholar
  54. 54.
    Botvinick MM, Plaut DC. Short-term memory for serial order: a recurrent neural network model. Psychol Rev. 2006;113(2):201–33.CrossRefPubMedGoogle Scholar
  55. 55.
    Dominey P, Arbib M, Joseph JP. A model of corticostriatal plasticity for learning associations and sequences. J Cognit Neurosci. 1995;7(3):311–36.CrossRefGoogle Scholar
  56. 56.
    Dominey P, Hoen M, Inui T. A neurolinguistic model of grammatical construction processing. J Cognit Neurosci. 2006;18(12):2088–107.CrossRefGoogle Scholar
  57. 57.
    Shastri L. Episodic memory trace formation in the hippocampal system: a model of cortico-hippocampal interaction. Berkeley: International Computer Science Institute (ICSI), UC Berkeley; 2001; TR-01-004.Google Scholar
  58. 58.
    van der Velde F, de Kamps M. Neural blackboard architectures of combinatorial structures in cognition. Behav Brain Sci. 2006;29:37–108.PubMedGoogle Scholar
  59. 59.
    Stewart T, Eliasmith C. Compositionality and biologically plausible models. In: Werning M, Hinzen W, editors. The Oxford handbook of compositionality. New York: Oxford University Press; 2012.Google Scholar
  60. 60.
    Dennis S. A memory-based theory of verbal cognition. Cognit Sci. 2005;29(2):145–93.CrossRefGoogle Scholar
  61. 61.
    Reynolds J, Zacks J, Braver T. A computational model of event segmentation from perceptual prediction. Cognit Sci. 2007;31:613–43.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Department of Computer ScienceUniversity of OtagoDunedinNew Zealand
  2. 2.Centre for Cognitive Science FMFI UKComenius UniversityBratislavaSlovakia

Personalised recommendations