Cognitive Computation

, Volume 6, Issue 4, pp 928–939 | Cite as

GMM-Based Evaluation of Emotional Style Transformation in Czech and Slovak

  • Jiří PřibilEmail author
  • Anna Přibilová


In the development of the voice conversion and the emotional speech style transformation in the text-to-speech systems, it is very important to obtain feedback information about the users’ opinion on the resulting synthetic speech quality. For this reason, the evaluations of the quality of the produced synthetic speech must often be performed for comparison. The main aim of the experiments described in this paper was to find out whether the classifier based on Gaussian mixture models (GMMs) could be applied for evaluation of male and female resynthesized speech that had been transformed from neutral to four emotional states (joy, surprise, sadness, and anger) spoken in Czech and Slovak languages. We suppose that it is possible to combine this GMM-based statistical evaluation with the classical one in the form of listening tests or it can replace them. For verification of our working hypothesis, a simple GMM emotional speech classifier with a one-level structure was realized. The next task of the performed experiment was to investigate the influence of different types and values (mean, median, standard deviation, relative maximum, etc.) of the used speech features (spectral and/or supra-segmental) on the GMM classification accuracy. The obtained GMM evaluation scores are compared with the results of the conventional listening tests based on the mean opinion scores. In addition, correctness of the GMM classification is analyzed with respect to the influence of the setting of the parameters during the GMM training—the number of mixture components and the types of speech features. The paper also describes the comparison experiment with the reference speech corpus taken from the Berlin database of emotional speech in German language as the benchmark for the evaluation of the performance of our one-level GMM classifier. The obtained results confirm practical usability of the developed GMM classifier, so we will continue in this research with the aim to increase the classification accuracy and compare it with other approaches like the support vector machines.


Emotional speech transformation Spectral and prosodic features of speech GMM-based emotion classification 



The work has been supported by the Grant Agency of the Slovak Academy of Sciences (VEGA 2/0013/14) and the Ministry of Education of the Slovak Republic (VEGA1/0987/12, KEGA 022STU-4/2014).


  1. 1.
    Faundez-Zanuy M, Hussain A, Mekyska J, Sesa-Nogueras E, Monte-Moreno E, Esposito A, Chetouani M, Garre-Olmo J, Abel A, Smékal Z, Lopez-de-Ipiña K. Biometric applications related to human beings: there is life beyond security. Cognit Comput. 2013;5(1):136–51.CrossRefGoogle Scholar
  2. 2.
    Reynolds DA, Quatieri TF, Dunn RB. Speaker verification using adapted Gaussian mixture models. Digit Signal Proc. 2000;10(1–3):19–41.CrossRefGoogle Scholar
  3. 3.
    Reynolds DA, Rose RC. Robust text-independent speaker identification using Gaussian mixture speaker models. IEEE Trans Speech Audio Process. 1995;3(1):72–83.CrossRefGoogle Scholar
  4. 4.
    Kim J-B, Park J-S, Oh Y-H. Speaker-characterized emotion recognition using online and iterative speaker adaptation. Cognit Comput. 2012;4(4):398–408.CrossRefGoogle Scholar
  5. 5.
    Chetouani M, Faundez-Zanuy M, Gas B, Zarader JL. Investigation on LP-residual representations for speaker identification. Pattern Recogn. 2009;42(3):487–94.CrossRefGoogle Scholar
  6. 6.
    Campbell WM, Campbell JP, Reynolds DA, Singer E, Torres-Carrasquillo PA. Support vector machines for speaker and language recognition. Comput Speech Lang. 2006;20(2–3):210–29.CrossRefGoogle Scholar
  7. 7.
    Bhardwaj S, Srivastava S, Hanmandlu M, Gupta JRP. GFM-based methods for speaker identification. IEEE Trans Cybern. 2013;43(3):1047–58.PubMedCrossRefGoogle Scholar
  8. 8.
    Ayadi ME, Kamel MS, Karray F. Survey on speech emotion recognition: features, classification schemes, and databases. Pattern Recogn. 2011;44(3):572–87.CrossRefGoogle Scholar
  9. 9.
    Atassi H, Esposito A, Smékal Z. Emotion recognition from spontaneous Slavic speech. In: Proceedings of the IEEE international conference on cognitive infocommunications; 2012. p. 389–94.Google Scholar
  10. 10.
    Gharavian D, Sheikhan M, Ashoftedel F. Emotion recognition improvement using normalized formant. supplementary features by hybrid of DTW-MLP-GMM model. Neural Comput Appl. 2013;22(6):1181–91.CrossRefGoogle Scholar
  11. 11.
    Milton A., Tamil Selvi S. Class-specific multiple classifiers scheme to recognize emotions from speech signals. Comput Speech Lang. 2013. doi: 10.1016/j.csl.2013.08.004.
  12. 12.
    Mariooryad S, Busso C. Compensating for speaker or lexical variabilities in speech for emotion recognition. Speech Commun. 2014;57:1–12. doi: 10.1016/j.specom.2013.07.CrossRefGoogle Scholar
  13. 13.
    Rao KS. Voice conversion by mapping the speaker-specific features using pitch synchronous approach. Comput Speech Lang. 2010;24(3):474–94.CrossRefGoogle Scholar
  14. 14.
    Maia R, Akamine M. On the impact of excitation and spectral parameters for expressive statistical parametric speech synthesis. Comput Speech Lang. 2013. doi: 10.1016/j.csl.2013.10.001.
  15. 15.
    Přibilová A, Přibil J. Spectrum modification for emotional speech synthesis. In: Esposito A, Hussain A, Marinaro M, Martone R, editors. Multimodal signals: cognitive and algorithmic issues. LNAI 5398. Berlin: Springer; 2009. p. 232–41.Google Scholar
  16. 16.
    Přibilová A, Přibil J. Harmonic model for female voice emotional synthesis. In: Fierrez J, Ortega-Garcia J, Esposito A, Drygajlo A, Faundez-Zanuy M, editors. Biometric ID management and multimodal communication. LNCS 5707. Berlin: Springer; 2009. p. 41–8.CrossRefGoogle Scholar
  17. 17.
    Vích R, Přibil J, Smékal Z. New cepstral zero-pole vocal tract models for TTS synthesis. In: Proceedings of IEEE Region 8 EUROCON’2001; 2001, vol. 2, p. 458–62.Google Scholar
  18. 18.
    Scherer KR. Vocal communication of emotion: a review of research paradigms. Speech Commun. 2003;40(1–2):227–56.CrossRefGoogle Scholar
  19. 19.
    Přibil J, Přibilová A. Statistical analysis of complementary spectral features of emotional speech in Czech and Slovak. In: Habernal I, Matoušek V, editors. Text, speech and dialogue. LNAI 6836. Berlin: Springer; 2011. p. 299–306.Google Scholar
  20. 20.
    Přibil J, Přibilová A. Comparison of spectral and prosodic parameters of male and female emotional speech in Czech and Slovak. In: Proceedings of the IEEE international conference on acoustics, speech, and signal processing (ICASSP); 2011, p. 4720–3.Google Scholar
  21. 21.
    Li M, Han KJ, Narayan S. Automatic speaker age and gender recognition using acoustic and prosodic level information fusion. Comput Speech Lang. 2013;27(1):151–67.CrossRefGoogle Scholar
  22. 22.
    Přibil J, Přibilová A. Evaluation of influence of spectral and prosodic features on GMM classification of Czech and Slovak emotional speech. EURASIP J Audio Speech Music Process. 2013;2013(8):1–22.Google Scholar
  23. 23.
    Přibil J, Přibilová A. Influence of visual stimuli on evaluation of converted emotional speech by listening tests. In: Esposito A, Vinciarelli A, Vicsi K, Pelachaud C, Nijholt A, editors. Analysis of verbal and nonverbal communication and enactment. LNCS 6800. Berlin: Springer; 2011. p. 378–92.Google Scholar
  24. 24.
    Artstein R, Poesio M. Inter-coder agreement for computational linguistics. Comput Linguist. 2008;4:555–96. doi: 10.1162/coli.07-034-R2.CrossRefGoogle Scholar
  25. 25.
    Siegert I, Böck R, Wendemuth A. Inter-rater reliability for emotion annotation in human-computer interaction—comparison and methodological improvements. J Multimodal User Interfaces Special Issue From Multimodal Analysis to Real-Time Interactions with Virtual Agents, doi: 10.1007/s12193-013-0129-9, Springer, 2013 (online).
  26. 26.
    Burkhardt F, Paeschke A, Rolfes M, Sendlmeier W, Weiss B. A database of German emotional speech. In Proceedings of INTERSPEECH 2005, Lisbon, Portugal, p. 1517–1520.Google Scholar
  27. 27.
    Vondra M, Vích R. Recognition of emotions in german speech using Gaussian Mixture models. In: Esposito A, Hussain A, Marinaro M, Martone R, editors. Multimodal signals: cognitive and algorithmic issues. LNAI 5398. Berlin: Springer; 2009. p. 256–63.Google Scholar
  28. 28.
    Bitouk D, Verma R, Nenkova A. Class-level spectral features for emotion recognition. Speech Commun. 2010;52:613–25.PubMedCentralPubMedCrossRefGoogle Scholar
  29. 29.
    Dileep AD, Sekhar CC. Class-specific GMM based intermediate matching kernel for classification of varying length patterns of long duration speech using support vector machines. Speech Commun. 2014;57:126–43.CrossRefGoogle Scholar
  30. 30.
    Bourouba H, Korba CA, Djemili R. Novel approach in speaker identification using SVM and GMM. Control Eng Appl Inform. 2013;15(3):87–95.Google Scholar
  31. 31.
    Kotti M, Paternò F. Speaker-independent emotion recognition exploiting a psychologically-inspired binary cascade classification schema. Int J Speech Technol. 2012;15:131–50. doi: 10.1007/s10772-012-9127-7.CrossRefGoogle Scholar
  32. 32.
    Schuller B, Vlasenko B, Eyben F, Wollmer M, Stuhlsatz A, Wendemuth A, Rigoll G. Cross-corpus acoustic emotion recognition: variances and strategies. IEEE Trans Affect Comput. 2010;1(2):119–31.CrossRefGoogle Scholar
  33. 33.
    Nabney IT. Netlab Pattern Analysis Toolbox. Copyright (1996–2001). Retrieved 16 Feb 2012, from
  34. 34.
    Shami M, Verhelst W. An evaluation of the robustness of existing supervised machine learning approaches to the classification of emotions in speech. Speech Commun. 2007;49:201–12.CrossRefGoogle Scholar
  35. 35.
    Matoušek J, Tihelka D. SVM-based detection of misannotated words in read speech corpora. In: Habernal I, Matoušek V, editors. Text, speech, and dialogue. LNCS 8082. Berlin: Springer; 2013. p. 457–64.Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Institute of Measurement ScienceSlovak Academy of SciencesBratislavaSlovakia
  2. 2.Institute of Electronics and PhotonicsFaculty of Electrical Engineering and Information TechnologyBratislavaSlovakia

Personalised recommendations