Cognitive Computation

, Volume 7, Issue 1, pp 111–136 | Cite as

Agent-Based Modeling of Emotion Contagion in Groups

  • Tibor Bosse
  • Rob Duell
  • Zulfiqar A. Memon
  • Jan TreurEmail author
  • C. Natalie van der Wal


To avoid the development of negative emotion in their teams, team leaders may benefit from being aware of the emotional dynamics of the team members. To this end, the use of intelligent computer systems that analyze emotional processes within teams is a promising direction. As a first step toward the development of such systems, this paper uses an agent-based approach to formalize and simulate emotion contagion processes within groups, which may involve absorption or amplification of emotions of others. The obtained computational model is analyzed both by explorative simulation and by mathematical analysis. In addition, to illustrate the applicability of the model, it is shown how the model can be integrated within a computational ‘ambient agent model’ that monitors and predicts group emotion levels over time and proposes group support actions based on that. Based on this description, a discussion is provided of the main contribution of the model, as well as the next steps needed to incorporate it into real-world applications.


Multi-agent model Emotion contagion spirals Ambient agent model 



The authors wish to thank Alexei Sharpanskykh for generating the simulation results presented in section “Larger Populations.”


  1. 1.
    Barsade SG. The ripple effect: emotional contagion and its influence on group behavior. Adm Sci Q. 2002;47(4):644–75.CrossRefGoogle Scholar
  2. 2.
    Barsade SG, Gibson DE. Group emotion: a view from top and bottom. In: Gruenfeld D, Mannix E, Neale M, editors. Research on managing groups and teams. Stamford: JAI Press; 1998. p. 81–102.Google Scholar
  3. 3.
    Barsade SG, Gibson DE. Why does affect matter in organisations? Acad Manag Perspect. 2007;21(1):36–59.CrossRefGoogle Scholar
  4. 4.
    Bosse T, Duell R, Memon ZA, Treur J, van der Wal CN. A multi-agent model for mutual absorption of emotions. In: Otamendi J, Bargiela A, Montes JL, Pedrera LMD, editors. Proceedings of the 23rd European conference on modelling and simulation, ECMS’2009; 2009. p. 212–8.Google Scholar
  5. 5.
    Bosse T, Hoogendoorn M, Klein M, Treur J. A generic agent architecture for human-aware ambient computing. In: Mangina E, Carbo J, Molina JM, editors. Agent-based ubiquitous computing. Series on ambient and pervasive intelligence, vol. 1. World Scientific Publishers: Atlantis Press; 2009. p. 35–62. Shorter version in: Mühlhäuser M, Ferscha A, Aitenbichler E, editors. Constructing ambient intelligence: AmI-07 workshops proceedings. Communications in computer and information science (CCIS), vol. 11. Berlin: Springer; 2008. p. 93–103.Google Scholar
  6. 6.
    Bosse T, Jonker CM, van der Meij L, Sharpanskykh A, Treur J. Specification and verification of dynamics in agent models. Int J Cooper Inf Syst. 2009;18(2009):167–93.CrossRefGoogle Scholar
  7. 7.
    Bosse T, Duell R, Memon ZA, Treur J, van der Wal CN. A multi-agent model for emotion contagion spirals integrated within a supporting ambient agent model. In: Yang J-J, Yokoo M, Ito T, Jin Z, Scerri P, editors. Proceedings of the 12th international conference on principles of practice in multi-agent systems, PRIMA’09. Lecture notes in artificial intelligence, vol. 5925. Berlin: Springer; 2009. p. 48–67.Google Scholar
  8. 8.
    Bourbakis N, Esposito A, Kavraki D. Extracting and associating meta-features for understanding people’s emotional behaviour: face and speech. Cogn Comput. 2011;3:436–48.CrossRefGoogle Scholar
  9. 9.
    Cambria E, Livingstone A, Hussain A. The hourglass of emotions. In: Esposito A et al., editors. Cognitive behavioural systems 2011, lecture notes in computer science, vol. 7403. Berlin: Springer; 2012. p. 144–57.Google Scholar
  10. 10.
    Chetouani M, Mahdhaoui A, Ringeval F. Time-scale feature extractions for emotional speech characterization: applied to human centered interaction analysis. Cogn Comput. 2009;1:194–201.CrossRefGoogle Scholar
  11. 11.
    Damasio A. The feeling of what happens. Body and emotion in the making of consciousness. New York: Harcourt Brace; 1999.Google Scholar
  12. 12.
    Duell R, Memon ZA, Treur J, van der Wal CN. An ambient agent model for group emotion support. In: Cohn J, Nijholt A, Pantic M, editors. Proceedings of the third international conference on affective computing and intelligent interaction, ACII’09. USA: IEEE Computer Society Press; 2009. p. 550–7.Google Scholar
  13. 13.
    Ekman P, Friesen WV, Ellsworth P. Emotion in the human face: guidelines for research and integration of findings. New York: Pergamon; 1972.Google Scholar
  14. 14.
    Elliott C. The affective reasoner: a process model of emotions in a multi-agent system. Ph.D. dissertation, Northwestern University. Technical report no. 32; 1992.Google Scholar
  15. 15.
    Frederickson BL. The role of positive emotions in positive psychology: the broaden-and-build theory of positive emotions. Am Psychol. 2001;56:218–26.CrossRefGoogle Scholar
  16. 16.
    Frederickson BL, Branigan C. Positive emotions broaden the scope of attention and thought–action repertoires. Cogn Emot. 2005;19(3):313–32.CrossRefGoogle Scholar
  17. 17.
    Frederickson BL, Joiner T. Positive emotions trigger upward spirals toward emotional well-being. Psychol Sci. 2002;13(2):172–5.CrossRefGoogle Scholar
  18. 18.
    Frijda NH. The emotions. Cambridge, UK: Cambridge University Press; 1986.Google Scholar
  19. 19.
    Goldman AI. Simulating minds: the philosophy, psychology, and neuroscience of mindreading. New York: Oxford University Press; 2006.CrossRefGoogle Scholar
  20. 20.
    Goldman AI, Sripada CS. Simulationist models of face-based emotion recognition. Cognition. 2005;94:193–213.PubMedCrossRefGoogle Scholar
  21. 21.
    Hareli S, Rafaeli A. Emotion cycles: on the social influence of emotion in organizations. Res Organ Behav. 2008;28:35–59.CrossRefGoogle Scholar
  22. 22.
    Hatfield E, Cacioppo JT, Rapson RL. Emotional contagion. Cambridge: Cambridge University Press; 1994.Google Scholar
  23. 23.
    Hedström P, Sandell R, Stern C. Mesolevel networks and the diffusion of social movements: the case of the swedish social democratic party. Am J Sociol. 2000;106(1):145–72.CrossRefGoogle Scholar
  24. 24.
  25. 25.
  26. 26.
    Iacoboni M. Understanding others: imitation, language, empathy. In: Hurley S, Chater N, editors. Perspectives on imitation: from cognitive neuroscience to social science, vol. 1. Cambridge: MIT Press; 2005. p. 77–100.Google Scholar
  27. 27.
    Iacoboni M. Mirroring people. New York: Farrar, Straus and Giroux; 2008.Google Scholar
  28. 28.
    Kim JB, Park JS, Yung-Hwan Oh YH. Speaker-characterized emotion recognition using online and iterative speaker adaptation. Cogn Comput. 2012;4:398–408.CrossRefGoogle Scholar
  29. 29.
    Lazarus RS. Emotion and adaptation. New York: Oxford University Press; 1991.Google Scholar
  30. 30.
    LeBon G. The crowd. A study of the popular mind. London: Unwin; 1897.Google Scholar
  31. 31.
    Marsella S, Gratch J. EMA: A process model of appraisal dynamics. J Cogn Syst Res. 2009;10(1):70–90.CrossRefGoogle Scholar
  32. 32.
    Pan X, Han C, Dauber K, Law K. Human and social behaviour in computational modeling and analysis of egress. Autom Constr. 2006;15(4):448–61.CrossRefGoogle Scholar
  33. 33.
    Pescosolido AT. Emergent leaders as managers of group emotions. Leadersh Q. 2002;13(5):583–99.CrossRefGoogle Scholar
  34. 34.
    Rizzolatti G, Sinigaglia C. Mirrors in the brain: how our minds share actions and emotions. Oxford: Oxford University Press; 2008.Google Scholar
  35. 35.
    Rogers E. Diffusion of innovations. New York: Free Press; 1983.Google Scholar
  36. 36.
    Schoenewolf G. Emotional contagion: behavioral induction in individuals and groups. Mod Psycho-Anal. 1990;15:49–61.Google Scholar
  37. 37.
    Silverman BG. More realistic human behavior models for agents in virtual worlds: emotion, stress, and value ontologies. T.R., University of Pennsylvania/ACASA; 2001.Google Scholar
  38. 38.
    Totterdell P, Kellet S, Teuchmann K, Briner RB. Evidence of mood linkage in work groups. J Pers Soc Psychol. 1998;74:1504–15.CrossRefGoogle Scholar
  39. 39.
    Treur J. Biological and computational perspectives on the emergence of social phenomena: shared understanding and collective power. Trans Comput Collect Intell. 2012;8:168–91.Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Tibor Bosse
    • 1
  • Rob Duell
    • 1
  • Zulfiqar A. Memon
    • 1
    • 2
  • Jan Treur
    • 1
    Email author
  • C. Natalie van der Wal
    • 1
  1. 1.Department of Artificial IntelligenceVrije Universiteit AmsterdamAmsterdamThe Netherlands
  2. 2.Sukkur Institute of Business Administration (Sukkur IBA)SukkurPakistan

Personalised recommendations