Cognitive Computation

, Volume 6, Issue 4, pp 722–740 | Cite as

Interactive Technologies for Autistic Children: A Review

  • Sofiane BoucennaEmail author
  • Antonio Narzisi
  • Elodie Tilmont
  • Filippo Muratori
  • Giovanni Pioggia
  • David Cohen
  • Mohamed Chetouani


Recently, there have been considerable advances in the research on innovative information communication technology (ICT) for the education of people with autism. This review focuses on two aims: (1) to provide an overview of the recent ICT applications used in the treatment of autism and (2) to focus on the early development of imitation and joint attention in the context of children with autism as well as robotics. There have been a variety of recent ICT applications in autism, which include the use of interactive environments implemented in computers and special input devices, virtual environments, avatars and serious games as well as telerehabilitation. Despite exciting preliminary results, the use of ICT remains limited. Many of the existing ICTs have limited capabilities and performance in actual interactive conditions. Clinically, most ICT proposals have not been validated beyond proof of concept studies. Robotics systems, developed as interactive devices for children with autism, have been used to assess the child’s response to robot behaviors; to elicit behaviors that are promoted in the child; to model, teach and practice a skill; and to provide feedback on performance in specific environments (e.g., therapeutic sessions). Based on their importance for both early development and for building autonomous robots that have humanlike abilities, imitation, joint attention and interactive engagement are key issues in the development of assistive robotics for autism and must be the focus of further research.


Robotics Children with autism Joint attention Imitation 



This study was supported by a grant from the European Commission (FP7: Michelangelo under Grant agreement n 288241) and the fund “Entreprendre pour aider.” The funding agencies and the University were not involved in the study design, collection, analysis and interpretation of data, writing of the paper or the decision to submit the paper for publication. We would like to thank MICHELANGELO Study Group (S. Bonfiglio, K. Maharatna, E. Tamburini, A. Giuliano, M. Donnelly) for interesting discussions.


  1. 1.
    Aleotti J, Caselli S. Robust trajectory learning and approximation for robot programming by demonstration. Rob Auton Syst. 2006;54(5):409–13.CrossRefGoogle Scholar
  2. 2.
    Altmann U. Studying movement synchrony using time series and regression models. In: Esposito IA, Hoffmann R, Hübler S, Wrann B, editors. Program and Abstracts of the COST 2102. International training school on cognitive behavioural systems. Dresden, Germany, 21–25 February; 2011. p. 23.Google Scholar
  3. 3.
    Andry P, Gaussier P, Moga S, Banquet J, Nadel J. Learning and communication in imitation: an autonomous robot perspective. IEEE Trans Syst Man Cybernet Part A. 2001;31(5):431–44.CrossRefGoogle Scholar
  4. 4.
    Andry P, Gaussier P, Nadel J, Hirsbrunner B. Learning invariant sensory-motor behaviors : a developmental approach of imitation mechanisms. Adapt Behav, 2004;12(2):117–40.Google Scholar
  5. 5.
    Ashenfelter K, Boker S, Waddell J, Vitanov N, Abadjieva E. Spatiotemporal symmetry and multifractal structure of head movements during dyadic conversation. J Exp Psychol Hum Percept Perform. 2009;35(4):1072.PubMedCrossRefGoogle Scholar
  6. 6.
    Bakker P, Kuniyoshi Y. Robot see, robot do: an overview of robot imitation. In: AISB96 Workshop on Learning in Robots and Animals. 1996; p. 3–11.Google Scholar
  7. 7.
    Baldwin J. Development and evolution. New York: The Macmillan company; 1902.Google Scholar
  8. 8.
    Baron-Cohen S. Mindblindness: an essay on autism and theory of mind. Cambridge: MIT press; 1997.Google Scholar
  9. 9.
    Baron-Cohen S, Wheelwright S. ’Obsessions’ in children with autism or asperger syndrome. Content analysis in terms of core domains of cognition. Br J Psychiatry. 1999;175(5):484–90.PubMedCrossRefGoogle Scholar
  10. 10.
    Bashshur R. Telemedicine and health care. Telemed J E Health. 2002;8(1):512.Google Scholar
  11. 11.
    Bauminger N, Gal E, Goren-Bar D. Enhancing social communication in high functioning children with autism through a co-located interface. 6th International Workshop on Social Intelligence Design, Trento 2007.Google Scholar
  12. 12.
    Bekele E, Zheng Z, Swanson A, Crittendon J, Warren Z, Sarkar N. Understanding how adolescents with autism respond to facial expressions in virtual reality environments. IEEE Trans Vis Comput Graph. 2013;19(4):711–20.PubMedCrossRefGoogle Scholar
  13. 13.
    Bellani M, Fornasari L, Chittaro L, Brambilla P. Virtual reality in autism: state of the art. Epidemiol Psychiatr Sci. 2011;20(3):235–8.PubMedCrossRefGoogle Scholar
  14. 14.
    Bernieri F, Reznick J, Rosenthal R. Synchrony, pseudosynchrony, and dissynchrony:measuring the entrainment process in mother-infant interactions. J Personal Soc Psychol. 1988;54(2):243.CrossRefGoogle Scholar
  15. 15.
    Berthouze L, Bakker P, Kuniyoshi Y. Learning of oculo-motor control: a prelude to robotic imitation. In: Intelligent Robots and Systems’ 96, IROS 96, Proceedings of the 1996 IEEE/RSJ International Conference on, vol. 1. 1996; p. 376–381. IEEE.Google Scholar
  16. 16.
    Billard A, Hayes G. Learning to communicate through imitation in autonomous robots. In: Artificial Neural NetworksICANN’97. Springer, Berlin; 1997; p. 763–768.Google Scholar
  17. 17.
    Bird G, Leighton J, Press C, Heyes C. Intact automatic imitation of human and robot actions in autism spectrum disorders. Proc R Soc B Biol Sci. 2007;274(1628):3027–31.CrossRefGoogle Scholar
  18. 18.
    Blocher K, Picard R. Affective social quest: emotion recognition therapy for autistic children. Socially Intelligent Agents: creating relationships with computers and robots; 2002. p. 133140 .Google Scholar
  19. 19.
    Boker S, Xu M, Rotondo J, King K. Windowed cross-correlation and peak picking for the analysis of variability in the association between behavioral time series. Psychol Methods. 2002;7(3):338–55.PubMedCrossRefGoogle Scholar
  20. 20.
    Boucenna S, Anzalone S, Tilmont E, Cohen D, Chetouani M. Learning of social signatures through imitation game between a robot and a human partner. IEEE Trans Auton Ment Dev, in revision ; 2014a.Google Scholar
  21. 21.
    Boucenna S, Delaherche E, Chetouani M, Gaussier P. A new approach for learning postures : an imitation game between a human and a robot. In: IEEE/RSJ International Conference on Robots and Systems, (IROS 2012). Workshop : Cognitive Neuroscience, Robotics; 2012. p. 1–4.Google Scholar
  22. 22.
    Boucenna S, Gaussier P, Andry P, Hafemeister L. Imitation as a communication tool for online facial expression learning and recognition. In: Intelligent Robots and Systems (IROS), 2010 IEEE/RSJ International Conference on. IEEE. 2010; p. 5323–5328.Google Scholar
  23. 23.
    Boucenna S, Gaussier P, Andry P, Hafemeister L. A robot learns the facial expressions recognition and face/non-face discrimination through an imitation game. Int J Soc Robot, to appear 2014b.Google Scholar
  24. 24.
    Boucenna S, Gaussier P, Hafemeister L. Development of joint attention and social referencing. In: Development and Learning (ICDL), 2011 IEEE International Conference on, vol 2. IEEE. 2011; p. 1–6.Google Scholar
  25. 25.
    Calinon S, Guenter F, Billard A. On learning, representing, and generalizing a task in a humanoid robot. IEEE Trans Syst Man Cybernet Part B Cybernet. 2007;37(2):286–98.CrossRefGoogle Scholar
  26. 26.
    Campbell C, Peters R, Bodenheimer R, Bluethmann W, Huber E, Ambrose R. Superpositioning of behaviors learned through teleoperation. IEEE Trans Robot. 2006;22(1):79–91.CrossRefGoogle Scholar
  27. 27.
    Campbell N. Multimodal processing of discourse information; the effect of synchrony. In: Universal Communication, 2008. ISUC’08. Second International Symposium on. IEEE, 2008; p. 12–15.Google Scholar
  28. 28.
    Carpendale J, Lewis C. Constructing an understanding of the mind: the development of children’s social understanding within social interaction. Behav Brain Sci. 2004;27:79–151.PubMedGoogle Scholar
  29. 29.
    Carpenter M, Nagell K, Tomasello M. Social cognition, joint attention, and communicative competence from 9 to 15 months of age. Monogr Soc Res Child Dev. 1998;63(4):i–vi, 1–143.Google Scholar
  30. 30.
    Chaby L, Chetouani M, Plaza M, Cohen D. Exploring multimodal social-emotional behaviors in autism spectrum disorders. In: Workshop on Wide Spectrum Social Signal Processing, 2012 ASE/IEEE International Conference on Social, Computing. 2012; p. 950–954.Google Scholar
  31. 31.
    Chaminade T, Da Fonseca D, Rosset D, Lutcher E, Cheng G, Deruelle C. Fmri study of young adults with autism interacting with a humanoid robot. In: RO-MAN, 2012 IEEE. IEEE, 2012; p. 380–385.Google Scholar
  32. 32.
    Chetouani M, Mahdhaoui A, Ringeval F. Time-scale feature extractions for emotional speech characterization. Cognit Comput. 2009;1(2):194–201.CrossRefGoogle Scholar
  33. 33.
    Cohen D. Traumatismes et traces : donnés expérimentales. Neuropsychiatr Enfance Adolesc. 2012;60:315–23.CrossRefGoogle Scholar
  34. 34.
    Costa S, Santos C, Soares F, Ferreira M, Moreira F. Promoting interaction amongst autistic adolescents using robots. In Engineering in Medicine and Biology Society (EMBC), 2010 Annual International Conference of the IEEE. IEEE; 2010; p. 3856–3859.Google Scholar
  35. 35.
    Damasio A. Descartes’ error. New York: Putnam’s Sons; 1994.Google Scholar
  36. 36.
    Dautenhahn K. Roles and functions of robots in human society: implications from research in autism therapy. Robotica. 2003;21(4):443–52.CrossRefGoogle Scholar
  37. 37.
    Dautenhahn K, Werry I. Towards interactive robots in autism therapy: Background, motivation and challenges. Pragmat Cognit. 2004;12(1):1–35.CrossRefGoogle Scholar
  38. 38.
    Dawson G, Rogers S, Munson J, Smith M, Winter J, Greenson J, Donaldson A, Varley J. Randomized, controlled trial of an intervention for toddlers with autism: the early start denver model. Pediatrics. 2009;125(1):17–23.CrossRefGoogle Scholar
  39. 39.
    de Rengervé A, Boucenna S, Andry P, Gaussier P. Emergent imitative behavior on a robotic arm based on visuo-motor associative memories. In: Intelligent Robots and Systems (IROS), 2010 IEEE/RSJ International Conference on. IEEE, 2010; p. 1754–1759.Google Scholar
  40. 40.
    Decety J, Jackson P. The functional architecture of human empathy. Behav Cogn Neurosci Rev. 2004;3(2):71–100.PubMedCrossRefGoogle Scholar
  41. 41.
    Delaherche E, Chetouani M. Multimodal coordination: exploring relevant features and measures. In: Proceedings of the 2nd international workshop on Social signal processing. ACM: 2010; p. 47–52.Google Scholar
  42. 42.
    Delaherche E, Chetouani M, Mahdhaoui A, Saint-Georges C, Viaux S, Cohen D. Interpersonal synchrony: a survey of evaluation methods across disciplines. IEEE Trans Affect Comput. 2012;3(3):349–65.CrossRefGoogle Scholar
  43. 43.
    Diamond B, Shreve G, Bonilla J. Telerehabilitation, cognition and user-accessibility. NeuroRehabilitation. 2003;18(2):1717.Google Scholar
  44. 44.
    Diehl J, Schmitt L, Villano M, Crowell C. The clinical use of robots for individuals with autism spectrum disorders: a critical review. Res Autism Spectr Disord. 2012;6(1):249–62.PubMedCentralPubMedCrossRefGoogle Scholar
  45. 45.
    Dillmann R. Teaching and learning of robot tasks via observation of human performance. Robot Auton Syst. 2004;47(2):109–16.CrossRefGoogle Scholar
  46. 46.
    DiSalvo D, Oswald D. Peer-mediated interventions to increase the social interaction of children with autism: consideration of peer experiences. Focus Autism Other Dev Disabl. 2002;17(4):198–208.CrossRefGoogle Scholar
  47. 47.
    Duquette A, Michaud F, Mercier H. Exploring the use of a mobile robot as an imitation agent with children with low-functioning autism. Auton Robots. 2008;24(2):147–57.CrossRefGoogle Scholar
  48. 48.
    Eddon G. Danny’s rooms. In: proceedings of the john hopkins national search for computing applications to assist persons with disabilities. IEEE Computing Society press, 1992; p. 7879.Google Scholar
  49. 49.
    Emery N. The eyes have it: the neuroethology, function and evolution of social gaze. Neurosci Biobehav Rev. 2000;24(6):581–604.PubMedCrossRefGoogle Scholar
  50. 50.
    Enyon A. Computer interaction: an update on the avatar program. Communication, Summer. 1997; p. 18.Google Scholar
  51. 51.
    Esposito A. The perceptual and cognitive role of visual and auditory channels in conveying emotional information. Cognit Comput. 2009;1(3):268–78.CrossRefGoogle Scholar
  52. 52.
    Fabri M. Emotionally expressive avatars for collaborative virtual environments. A thesis submitted in partial fulfillment of the requirements of Leeds Metropolitan University for the degree of Doctor of Philosophy 2006.Google Scholar
  53. 53.
    Fabri M, Elzouki S, Moore D. Emotionally expressive avatars for chatting, learning and therapeutic intervention, human–computer interaction. HCI Intelligent Multimodal Interaction Environments, 2007; p. 275–285.Google Scholar
  54. 54.
    Feil-Seifer D, Matarić M. Toward socially assistive robotics for augmenting interventions for children with autism spectrum disorders. In: Experimental robotics. Springer, Berlin. 2009; p. 201–210.Google Scholar
  55. 55.
    Feil-Seifer D, Mataric M. Automated detection and classification of positive vs. negative robot interactions with children with autism using distance-based features. In: Human-Robot Interaction (HRI), 2011 6th ACM/IEEE International Conference on. IEEE: 2011; p. 323–330.Google Scholar
  56. 56.
    Flores M, Musgrove K, Renner S, Hinton V, Strozier S, Franklin S, Hil D. A comparison of communication using the apple ipad and a picture-based system. Augment Altern Commun. 2012;28(2):74–84.PubMedCrossRefGoogle Scholar
  57. 57.
    Fong T, Nourbakhsh I, Dautenhahn K. A survey of socially interactive robots. Robo Auton Syst. 2003;42(3):143–66.CrossRefGoogle Scholar
  58. 58.
    François D, Powell S, Dautenhahn K. A long-term study of children with autism playing with a robotic pet: taking inspirations from non-directive play therapy to encourage children’s proactivity and initiative-taking. Interact Stud. 2009;10(3):324–73.CrossRefGoogle Scholar
  59. 59.
    Frith U, Morton J, Leslie A. The cognitive basis of a biological disorder: autism. Trends Neurosc. 1991;14(10):434438.CrossRefGoogle Scholar
  60. 60.
    Fujimoto I, Matsumoto T, De Silva P, Kobayashi M, Higashi M. Mimicking and evaluating human motion to improve the imitation skill of children with autism through a robot. Int J Soc Robot. 2011;3(4):349–57.CrossRefGoogle Scholar
  61. 61.
    Gal E, Goren-Bar D, Gazit E, Bauminger N, Cappelletti A, Pianesi F, Stock O, Zancanaro M, Weiss PL. Enhancing social communication through story-telling among high-functioning children with autism. Intelligent Technologies for Interactive Entertainment, 2005; p. 320–323.Google Scholar
  62. 62.
    Golan O, Ashwin E, Granader Y, McClintock S, Day K, Leggett V, Baron-Cohen S. Enhancing emotion recognition in children with autism spectrum conditions: an intervention using animated vehicles with real emotional faces. J Autism Dev Disord. 2010;40(3):269–79.PubMedCrossRefGoogle Scholar
  63. 63.
    Gonzalez J, Cabrera M, Gutierrez F. Using videogames in special education. Comput Aid Syst Theory, EUROCAST. 2007; p. 360–7.Google Scholar
  64. 64.
    Green, S. (1993). Computer-based simulations in the education and assessment of autistic children. in: Rethinking the Roles of Technology in Education, Tenth International Conference on Technology and Education, Massachusetts Institute of Technology, Cambridge, MA, 1:334336.Google Scholar
  65. 65.
    Guenter F, Hersch M, Calinon S, Billard A. Reinforcement learning for imitating constrained reaching movements. Adv Robot. 2007;21(13):1521–44.Google Scholar
  66. 66.
    Hayes G, Demiris J. A robot controller using learning by imitation. Department of Artificial Intelligence, University of Edinburgh; 1994.Google Scholar
  67. 67.
    Herrera G, Alcantud F, Jordan R, Blanquer A, Labajo A, De pablo C. Development of symbolic play through the use of virtual reality tools in children with autistic spectrum disorders. Autism. 2008;12:143157.CrossRefGoogle Scholar
  68. 68.
    Hersch M, Guenter F, Calinon S, Billard A. Dynamical system modulation for robot learning via kinesthetic demonstrations. IEEE Trans Robot. 2008;24(6):1463–7.CrossRefGoogle Scholar
  69. 69.
    Hetzroni O, Juman T. Effects of a computer-based intervention program on the communicative functions of children with autism. J Autism Dev Disord. 2011;34(2):95–113.CrossRefGoogle Scholar
  70. 70.
    Hileman C. Computer technology with autistic children. In: Autism Society of America National Conference. Milwaukee, Wisconsin; 1996.Google Scholar
  71. 71.
    Hopkins I, Gower M, Perez T, Smith D, Amthor F, Wimsatt F, Biasini F. Avatar assistant: improving social skills in students with an asd through a computer-based intervention. J Autism Dev Disord. 2011;41(11):1543–55.PubMedCrossRefGoogle Scholar
  72. 72.
    Horace H, Belton K. Smart ambience games for children with learning difficultie s. Technol E Learn Digit Entertain, 2006; 484–493.Google Scholar
  73. 73.
    Howlin P, Baron-Cohen S, Hadwin J. Teaching children with autism to mind-read: a practical guide for teachers and parents. New York: Wiley; 1999.Google Scholar
  74. 74.
    Hutinger P, Rippey R. How five preschool children with autism responded to computers. 1997.Google Scholar
  75. 75.
    Ijspeert A, Nakanishi J, Schaal S. Movement imitation with nonlinear dynamical systems in humanoid robots. In: Robotics and Automation, 2002. Proceedings. ICRA’02. IEEE International Conference on, vol 2. IEEE; 2002; pages 1398–1403.Google Scholar
  76. 76.
    Jones S. Imitation in infancy the development of mimicry. Psychol Sci. 2007;18(7):593–9.PubMedCrossRefGoogle Scholar
  77. 77.
    Jones S. The development of imitation in infancy. Philos Trans R Soc B Biol Sci. 2009;364(1528):2325.CrossRefGoogle Scholar
  78. 78.
    Jordan R. Computer assisted education for individuals with autism. Paper presented at the Autisme France 3rd International Conference 1995.Google Scholar
  79. 79.
    Jordan R. Multidisciplinary work for children with autism. Educ Child Psychol. 2001;18(2):5–14.Google Scholar
  80. 80.
    Jowett E, Moore D, Anderson A. Using an ipad-based video modelling package to teach numeracy skills to a child with an autism spectrum disorder. Dev Neurorehabil. 2012;15(4).Google Scholar
  81. 81.
    Kagohara D, van der Meer L, Ramdoss S, O’Reilly M, Lancioni G, Davis T, Rispoli M, Lang R, Marschik P, Sutherland D, Green V, Sigafoos J. Using ipods and ipads in teaching programs for individuals with developmental disabilities: a systematic review. Res Dev Disabil. 2013;34(1):147–56.PubMedCrossRefGoogle Scholar
  82. 82.
    Kaliouby R, Picard R, Barron-Cohen S. Affective computing and autism. Ann N Y Acad Sci, 2006; P. 228248.Google Scholar
  83. 83.
    Kaplan F, Hafner V. The challenges of joint attention. Interact Stud. 2006;7(2):135–69.CrossRefGoogle Scholar
  84. 84.
    Konstantinidis E, Bamidis P, Koufogiannis D. Development of a generic and flexible human body wireless sensor network. In Proceedings of the 6th European Symposium on Biomedical Engineering (ESBME) 2008.Google Scholar
  85. 85.
    Konstantinidis E, Luneski A, Frantzidis C, Pappas C, Bamidis P. A proposed framework of an interactive semi-virtual environment for enhanced education of children with autism spectrum disorders. The 22nd IEEE International Symposium on Computer-Based Medical Systems (CBMS) 2009.Google Scholar
  86. 86.
    Kozima H, Michalowski M, Nakagawa C. Keepon: a playful robot for research, therapy, and entertainment. Int J Soc Robot. 2009;1(1):3–18.CrossRefGoogle Scholar
  87. 87.
    Kozima H, Nakagawa C, Yasuda Y. Children-robot interaction: a pilot study in autism therapy. Prog Brain Res. 2007;164:385.PubMedCrossRefGoogle Scholar
  88. 88.
    Kuniyoshi Y. The science of imitation-towards physically and socially grounded intelligence. In: Special Issue TR-94001, Real World Computing Project Joint Symposium, Tsukuba-shi, Ibaraki-ken. Citeseer; 1994.Google Scholar
  89. 89.
    Lányi CS, Tilinger A. Multimedia and virtual reality in the rehabilitation of autistic children. In: Computers helping people with special needs. Heidelberg: Springer; 2004. p. 22–8.Google Scholar
  90. 90.
    Liu C, Conn K, Sarkar N, Stone W. Physiology-based affect recognition for computer-assisted intervention of children with autism spectrum disorder. Int J Hum Comput Stud. 2008;66(9):662–77.CrossRefGoogle Scholar
  91. 91.
    Lum P, Uswatte G, Taub E. A telerehabilitation approach to delivery of constraint-induced movement therapy. J Rehabil R D. 2006;43(3):391400.Google Scholar
  92. 92.
    Luneski, A., Konstantinidis, E., Hitoglou-Antoniadou, M., and Bamidis, P. (2008). Affective computer-aided learning for autistic children. 1st Workshop of Child, Computer and Interaction (WOCCI 08). Chania, Greece.Google Scholar
  93. 93.
    Marin-Urias L, Sisbot E, Alami R. Geometric tools for perspective taking for human-robot interaction. In: Artificial Intelligence, 2008. MICAI’08. Seventh Mexican International Conference on. IEEE; 2008; p. 243–249.Google Scholar
  94. 94.
    Marin-Urias L, Sisbot E, Pandey A, Tadakuma R, Alami R. Towards shared attention through geometric reasoning for human robot interaction. In: Humanoid Robots, 2009. Humanoids 2009. 9th IEEE-RAS International Conference on. IEEE; 2009; p. 331–336.Google Scholar
  95. 95.
    Marnik J, Szela M. Multimedia program for teaching autistic children. Inf Technol Biomed ASC. 2008;47:505512.Google Scholar
  96. 96.
    Maurer A, Hersch M, Billard A. Extended hopfield network for sequence learning: Application to gesture recognition. In: Artificial Neural Networks: Biological Inspirations-ICANN 2005. Springer, Berlin; 2005; p. 493–498.Google Scholar
  97. 97.
    Michelet S, Karp K, Delaherche E, Achard C, Chetouani M. Automatic imitation assessment in interaction. In: Human Behavior Understanding (IROS’12 workshop)., page To appear 2012.Google Scholar
  98. 98.
    Mitchell P, Parsons S, Leonard A. Using virtual environments for teaching social understanding to 6 adolescents with autistic spectrum disorders. J Autism Dev Disord. 2006;3(37):589–600.Google Scholar
  99. 99.
    Mitchell P, Parsons S, Leonard A. Using virtual environments for teaching social understanding to 6 adolescents with autistic spectrum disorders. J Autism Dev Disord. 2007;37:589600.Google Scholar
  100. 100.
    Murdock L, Ganz J, Crittendon J. Use of an ipad play story to increase play dialogue of preschoolers with autism spectrum disorders. J Autism Dev Disord. 2013;43(9):2174–89.PubMedCrossRefGoogle Scholar
  101. 101.
    Murray D. Autism and information technology: therapy with computers. Autism Learn Guide Good Pract, 1997; p. 100117.Google Scholar
  102. 102.
    Nadel J, Simon M, Canet P, Soussignan R, Blancard P, Canamero L, Gaussier P. Human responses to an expressive robot. In: Procs of the Sixth International Workshop on Epigenetic Robotics. Lund University; 2006.Google Scholar
  103. 103.
    Nagai Y, Hosoda K, Morita A, Asada M. A constructive model for the development of joint attention. Connect Sci. 2003;15(4):211–29.CrossRefGoogle Scholar
  104. 104.
    Narzisi A, Colombi C, Fusar P, Balottin U, Muratori F. Non-pharmacological treatments in autism spectrum disorders: an overview on early interventions for pre-schoolers. Curr Clin Pharmacol. 2014;9(1):1–10.CrossRefGoogle Scholar
  105. 105.
    Narzisi A, Muratori F, Calderoni S, Fabbro F, Urgesi C. Neuropsychological profile in high functioning autism spectrum disorders. J Autism Dev Dis. 2013;43(8):1895–909.Google Scholar
  106. 106.
    Orvalho V, Miranda J, Sousa A. Facial synthesys of 3d avatars for therapeutic applications. Stud Health Technol Inform. 2009;144:96–8.PubMedGoogle Scholar
  107. 107.
    Ospina M, Seida J, Clark B, Karkhaneh M, Hartling L, Tjosvold L, Vandermeer B, Smith V. Behavioural and developmental interventions for autism spectrum disorder: a clinical systematic review. PLoS One, 2008;3(11).Google Scholar
  108. 108.
    Papert S. Mindstorms: Children, computers, and powerful ideas. New York: Basic Books Inc; 1980.Google Scholar
  109. 109.
    Pardowitz M, Dillmann R. Towards life-long learning in household robots: The piagetian approach. In: Development and Learning, 2007. ICDL 2007. IEEE 6th International Conference on. IEEE; 2007; p. 88–93.Google Scholar
  110. 110.
    Pardowitz M, Knoop S, Dillmann R, Zollner R. Incremental learning of tasks from user demonstrations, past experiences, and vocal comments. IEEE Trans Syst Man Cybernet Part B Cybernet. 2007;37(2):322–32.CrossRefGoogle Scholar
  111. 111.
    Parmanto B, Saptono A, Ferrydiansyah R, Sugiantara I. Transcoding biomedical information resources for mobile handhelds. Proceedings of the 38th Annual Hawaii International Conference on System Sciences (HICSS’05). IEEE Computer Society, 2005;6:151–158.Google Scholar
  112. 112.
    Parsons S, Beardon L, Neale H, Reynard G, Eastgate R, Wilson J, Cobb S, Benford S, Mitchell P, Hopkins E. Development of social skills amongst adults with asperger’s syndrome using virtual environments: the ’as interactive’ project. In: Sharkey P, Cesarani A, Pugnetti L, Rizzo A, editors. 3rd ICDVRAT. Sardinia Italy: University of Reading; 2000.Google Scholar
  113. 113.
    Parsons S, Leonard A, Mitchell P. Virtual environments for social skills training: comments from two adolescents with autistic spectrum disorder. Comput Educ. 2006;47(2):186–206.CrossRefGoogle Scholar
  114. 114.
    Piaget J. La naissance de l’intelligence chez l’enfant, vol. 968. Paris: Delachaux et Niestlé; 1977.Google Scholar
  115. 115.
    Picard R. Emotion research by the people, for the people. Emot Rev. 2010;2(3):250–4.CrossRefGoogle Scholar
  116. 116.
    Pierno A, Mari M, Lusher D, Castiello U. Robotic movement elicits visuomotor priming in children with autism. Neuropsychologia. 2008;46(2):448–54.PubMedCrossRefGoogle Scholar
  117. 117.
    Pioggia G, Igliozzi R, Ferro M, Ahluwalia A, Muratori F, De Rossi D. An android for enhancing social skills and emotion recognition in people with autism. IEEE Trans Neural Syst Rehabil Eng. 2005;13(4):507–15.PubMedCrossRefGoogle Scholar
  118. 118.
    Pioggia G, Igliozzi R, Sica M, Ferro M, Muratori F, Ahluwalia A, De Rossi D. Exploring emotional and imitational android-based interactions in autistic spectrum disorders. J Cyber Therapy Rehabil. 2008;1(1):49–61.Google Scholar
  119. 119.
    Premack D, Woodruff G. Does the chimpanzee have a theory of mind? Behav Brain Sci. 1978;1(04):515–26.CrossRefGoogle Scholar
  120. 120.
    Rajendran G, Mitchell P. Computer mediated interaction in asperger’s syndrome: the bubble dialogue program. Comput Educ. 2000;35:187–207.CrossRefGoogle Scholar
  121. 121.
    Ramseyer F, Tschacher W. Nonverbal synchrony in psychotherapy: coordinated body-movement reflects relationship quality and outcome. J Consult Clin Psychol. 2011;79(3):284–95.PubMedCrossRefGoogle Scholar
  122. 122.
    Ravindra P, De Silva S, Tadano K, Saito A, Lambacher S, Higashi M. Therapeutic-assisted robot for children with autism. In: Intelligent Robots and Systems, 2009. IROS 2009. IEEE/RSJ International Conference on. IEEE; 2009; p. 3561–3567.Google Scholar
  123. 123.
    Ricks D, Colton M. Trends and considerations in robot-assisted autism therapy. In: Robotics and Automation (ICRA), 2010 IEEE International Conference on. IEEE; 2010; p. 4354–4359.Google Scholar
  124. 124.
    Robins B, Dautenhahn K, Dubowski J. Does appearance matter in the interaction of children with autism with a humanoid robot? Interact Stud. 2006;7(3):509–42.CrossRefGoogle Scholar
  125. 125.
    Robins B, Dautenhahn K, Te Boekhorst R, Billard A. Robotic assistants in therapy and education of children with autism: can a small humanoid robot help encourage social interaction skills? Univers Access Inf Soc. 2005;4(2):105–20.CrossRefGoogle Scholar
  126. 126.
    Rosset D, Rondan C, Fonseca D, Santos A, Assouline B, Deruelle C. Typical emotion processing for cartoon but not for real faces in children with autistic spectrum disorders. J Autism Dev Disord. 2008;38(5):919–25.PubMedCrossRefGoogle Scholar
  127. 127.
    Sadeghipour A, Kopp S. Embodied gesture processing: motor-based integration of perception and action in social artificial agents. Cognit Comput. 2011;3(3):419–35.PubMedCentralPubMedCrossRefGoogle Scholar
  128. 128.
    Scassellati B. Imitation and mechanisms of joint attention: a developmental structure for building social skills on a humanoid robot. In: Computation for metaphors, analogy, and agents. Springer, Berlin; 1999; p. 176–195.Google Scholar
  129. 129.
    Scassellati B. Foundations for a Theory of Mind for a Humanoid Robot. PhD thesis, Massachusetts Institute of Technology; 2001.Google Scholar
  130. 130.
    Scassellati B. How social robots will help us to diagnose, treat, and understand autism. In: Robotics research. Springer, Berlin; 2007; p. 552–563.Google Scholar
  131. 131.
    Scassellati B, Admoni H, Mataric M. Robots for use in autism research. Ann Rev Biomed Eng. 2012;14:275–94.CrossRefGoogle Scholar
  132. 132.
    Serret S. Jestimule, a serious game for autism spectrum disorders. Neuropsychiatr Enfance Adolesc. 2012;60(5):59.CrossRefGoogle Scholar
  133. 133.
    Simon M, Canet P, Soussignan R. L’enfant face à des expressions robotiques et humaines. Enfance. 2007;59(1):59–70.CrossRefGoogle Scholar
  134. 134.
    Sisbot E, Marin L, Alami R. Spatial reasoning for human robot interaction. In: Intelligent Robots and Systems, 2007. IROS 2007. IEEE/RSJ International Conference on. IEEE; 2007; p. 2281–2287.Google Scholar
  135. 135.
    Steil J, Röthling F, Haschke R, Ritter H. Situated robot learning for multi-modal instruction and imitation of grasping. Robot Auton Syst. 2004;47(2):129–41.CrossRefGoogle Scholar
  136. 136.
    Stribling P, Rae J, Dickerson P. Using conversation analysis to explore the recurrence of a topic in the talk of a boy with an autism spectrum disorder. Clin Linguist Phon. 2009;23(8):555–82.PubMedCrossRefGoogle Scholar
  137. 137.
    Strickland D. Brief report: two case studies using virtual reality as a learning tool for autistic children. J Autism Dev Disord. 1996;26(6):651–9.PubMedCrossRefGoogle Scholar
  138. 138.
    Sun X, Nijholt A. Multimodal embodied mimicry in interaction. In: Analysis of Verbal and Nonverbal Communication and Enactment. The Processing Issues. Springer; 2011; p. 147–153.Google Scholar
  139. 139.
    Takacs B. Special education and rehabilitation: teaching and healing with interactive graphics. IEEE Comput Graph Appl. 2005;25(5):40–8.PubMedCrossRefGoogle Scholar
  140. 140.
    Tapus A, Mataric M, Scassellati B. Socially assistive robotics. IEEE Robot Autom Mag. 2007;14(1):35.CrossRefGoogle Scholar
  141. 141.
    Tartaro A, Cassell J. Authorable virtual peers for autism spectrum disorders, conference on human factors in computing systems. CHI ’07, San Jose, CA, USA, 2007;p. 1677–1680.Google Scholar
  142. 142.
    Thill S, Pop C, Belpaeme T, Ziemke T, Vanderborght B. Robot-assisted therapy for autism spectrum disorders with (partially) autonomous control: challenges and outlook. Paladyn. 2012;3(4):209–17.CrossRefGoogle Scholar
  143. 143.
    Thorndike E. Animal intelligence: An experimental study of the associative processes in animals. Psychol Monogr General Appl, 1898;2(4):i–109.Google Scholar
  144. 144.
    Tomasello M. Joint attention as social cognition. Joint attention: its origins and role in development; 1995. p. 103–130.Google Scholar
  145. 145.
    Tomasello M, Farrar M. Joint attention and early language. Child Dev, 1986; p. 1454–1463.Google Scholar
  146. 146.
    Trepagnier C, Michael R. Telerehabilitation and virtual reality technology for rehabilitation: preliminary results. Proceedings of the 1999 International Technology and Persons with Disabilities Conference, 1999.Google Scholar
  147. 147.
    Varni G, Volpe G, Camurri A. A system for real-time multimodal analysis of nonverbal affective social interaction in user-centric media. IEEE Trans Multimed. 2010;12(6):576–90.CrossRefGoogle Scholar
  148. 148.
    Vinciarelli A, Pantic M, Bourlard H. Social signal processing: survey of an emerging domain. Image Vis Comput. 2009;27(12):1743–59.CrossRefGoogle Scholar
  149. 149.
    Vismara L, Rogers S. Efficacy of the early start denver model parent intervention for toddlers with asd delivered via internet technology. Philadelphia (USA): Oral presentation at International Meeting for Autism Research; 2010.Google Scholar
  150. 150.
    Wainer J, Ferrari E, Dautenhahn K, Robins B. The effectiveness of using a robotics class to foster collaboration among groups of children with autism in an exploratory study. Personal Ubiquitous Comput. 2010;14(5):445–55.CrossRefGoogle Scholar
  151. 151.
    Wallon H. De l’acte à la pensée 1942.Google Scholar
  152. 152.
    Wang M, Reid D. Virtual reality in pediatric neurorehabilitation: attention deficit hyperactivity disorder. Autism and cerebral palsy. Neuroepidemiology. 2011;36:218.CrossRefGoogle Scholar
  153. 153.
    Weissman O, Delaherche E, Rondeau M, Chetouani M, Cohen D, Feldman R. Oxytocin shapes parental motion characteristics during parent-infant interaction. Biol Lett, page in revision.Google Scholar
  154. 154.
    Welch K, Lahiri U, Warren Z, Sarkar N. An approach to the design of socially acceptable robots for children with autism spectrum disorders. Int J Soc Robot. 2010;2(4):391–403.CrossRefGoogle Scholar
  155. 155.
    Whiten A, Ham R. On the nature and evolution of imitation in the animal kingdom: reappraisal of a century of research. Adv Study Behav. 1992;21:239–83.CrossRefGoogle Scholar
  156. 156.
    Winters J. Telerehabilitation research: emerging opportunities. Annu Rev Biomed Eng. 2002;4:287320.CrossRefGoogle Scholar
  157. 157.
    Yucel Z, Salah A, Merigli C, Meriçli T. Joint visual attention modeling for naturally interacting robotic agents. In: Computer and Information Sciences, 2009. ISCIS 2009. 24th International Symposium on. IEEE; 2009; pages 242–247.Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Sofiane Boucenna
    • 1
    Email author
  • Antonio Narzisi
    • 2
  • Elodie Tilmont
    • 1
    • 3
  • Filippo Muratori
    • 2
  • Giovanni Pioggia
    • 4
  • David Cohen
    • 1
    • 3
  • Mohamed Chetouani
    • 1
  1. 1.Institut des Systemes Intelligents et de Robotique, CNRS UMR 7222Universite Pierre et Marie CurieParisFrance
  2. 2.Division of Child Neurology and PsychiatryUniversity of Pisa, Stella Maris Scientific InstituteCalambroneItaly
  3. 3.Department of Child and Adolescent Psychiatry, AP-HP, Groupe Hospitalier Piti-SalpltrireUniversit Pierre et Marie CurieParisFrance
  4. 4.CNRRomeItaly

Personalised recommendations