Cognitive Computation

, Volume 6, Issue 3, pp 558–584 | Cite as

Modelling Task-Dependent Eye Guidance to Objects in Pictures

  • Antonio Clavelli
  • Dimosthenis Karatzas
  • Josep Lladós
  • Mario Ferraro
  • Giuseppe Boccignone


We introduce a model of attentional eye guidance based on the rationale that the deployment of gaze is to be considered in the context of a general action-perception loop relying on two strictly intertwined processes: sensory processing, depending on current gaze position, identifies sources of information that are most valuable under the given task; motor processing links such information with the oculomotor act by sampling the next gaze position and thus performing the gaze shift. In such a framework, the choice of where to look next is task-dependent and oriented to classes of objects embedded within pictures of complex scenes. The dependence on task is taken into account by exploiting the value and the payoff of gazing at certain image patches or proto-objects that provide a sparse representation of the scene objects. The different levels of the action-perception loop are represented in probabilistic form and eventually give rise to a stochastic process that generates the gaze sequence. This way the model also accounts for statistical properties of gaze shifts such as individual scan path variability. Results of the simulations are compared either with experimental data derived from publicly available datasets and from our own experiments.


Visual attention Gaze guidance Value Payoff Stochastic fixation prediction 



The authors are grateful to the Referees and the Associate Editor, for their enlightening and valuable comments that have greatly improved the quality and clarity of an earlier version of this paper. This work was partially supported by the Spanish projects TIN2011-24631, TIN2009-14633-C03-03, CONSOLIDER INGENIO CSD2007-00018 and the fellowships RYC-2009-05031 and 2009FIB00020. With support from the Commission for Universities and Research Department for Innovation, Universities and Enterprise of the Generalitat of Catalonia and the European Social Fund.


  1. 1.
    Anderson BA. A value-driven mechanism of attentional selection. J Vis. 2013;13(3).Google Scholar
  2. 2.
    Epshtein B, Ofek E, Wexler Y. Detecting text in natural scenes with stroke width transform. In: 2010 IEEE conference on computer vision and pattern recognition (CVPR), 2010. p. 2963–2970.Google Scholar
  3. 3.
    Bahill AT, Adler D, Stark L. Most naturally occurring human saccades have magnitudes of 15 degrees or less. Investig Ophthalmol Vis Sci. 1975;14(6):468–9.Google Scholar
  4. 4.
    Bartumeus F, da Luz MGE, Viswanathan G, Catalan J. Animal search strategies: a quantitative random-walk analysis. Ecology. 2005;86(11):3078–87.CrossRefGoogle Scholar
  5. 5.
    van Beers R. The sources of variability in saccadic eye movements. J Neurosci. 2007;27(33):8757–70.PubMedCrossRefGoogle Scholar
  6. 6.
    Berridge KC, Robinson TE. Parsing reward. Trends Neurosci. 2003;26(9):507–13.PubMedCrossRefGoogle Scholar
  7. 7.
    Bettenbuhl M, Rusconi M, Engbert R, Holschneider M. Bayesian selection of markov models for symbol sequences: application to microsaccadic eye movements. PLoS ONE. 2012;7(9):e43,388.Google Scholar
  8. 8.
    Boccignone G. Nonparametric bayesian attentive video analysis. In: Proceedings of 19th international conference on pattern recognition, ICPR 2008. p. 1–4. IEEE Press.Google Scholar
  9. 9.
    Boccignone G, Campadelli P, Ferrari A, Lipori G. Boosted tracking in video. Signal Process Lett IEEE. 2010;17(2):129–32.CrossRefGoogle Scholar
  10. 10.
    Boccignone G, Ferraro M. Modelling gaze shift as a constrained random walk. Phys A Stat Mech Appl. 2004;331(1–2):207–18.CrossRefGoogle Scholar
  11. 11.
    Boccignone G, Ferraro M. Feed and fly control of visual scanpaths for foveation image processing. Ann Telecommun. 2013;68(3-4):201–17.Google Scholar
  12. 12.
    Boccignone G, Ferraro M. Ecological sampling of gaze shifts. IEEE Trans Cybern. 2014;44(2):266–79.PubMedCrossRefGoogle Scholar
  13. 13.
    Boccignone G, Marcelli A, Napoletano P, Di Fiore G, Iacovoni G, Morsa S. Bayesian integration of face and low-level cues for foveated video coding. IEEE Trans Circuits Syst Video Technol. 2008;18(12):1727–40.CrossRefGoogle Scholar
  14. 14.
    Borji A, Itti L. State-of-the-art in visual attention modeling. IEEE Trans Pattern Anal Mach Intell. 2013;35(1):185–207.PubMedCrossRefGoogle Scholar
  15. 15.
    Borji A, Sihite DN, Itti L. An object-based bayesian framework for top-down visual attention. In: Twenty-sixth AAAI conference on artificial intelligence (2012).Google Scholar
  16. 16.
    Brockmann D, Geisel T. The ecology of gaze shifts. Neurocomputing. 2000;32(1):643–50.CrossRefGoogle Scholar
  17. 17.
    Bundesen C. A computational theory of visual attention. Philos Trans R Soc Lond Ser B Biol Sci. 1998;353(1373):1271–81.CrossRefGoogle Scholar
  18. 18.
    Canosa R. Real-world vision: selective perception and task. ACM Trans Appl Percept. 2009;6(2):11.CrossRefGoogle Scholar
  19. 19.
    Castellanos EH, Charboneau E, Dietrich MS, Park S, Bradley BP, Mogg K, Cowan RL. Obese adults have visual attention bias for food cue images: evidence for altered reward system function. Int J Obes. 2009;33(9):1063–73.CrossRefGoogle Scholar
  20. 20.
    Cerf M, Frady E, Koch C. Faces and text attract gaze independent of the task: experimental data and computer model. J Vis. 2009;9(12).Google Scholar
  21. 21.
    Cerf M, Harel J, Einhäuser W, Koch C. Predicting human gaze using low-level saliency combined with face detection. Adv Neural Inf Process Syst. 2008;20.Google Scholar
  22. 22.
    Chambers J, Mallows C, Stuck B. A method for simulating stable random variables. J Am Stat Assess. 1976;71(354):340–4.CrossRefGoogle Scholar
  23. 23.
    Chernyak DA, Stark LW. Top-down guided eye movements. IEEE Trans Syst Man Cybernet B. 2001;31:514–22.CrossRefGoogle Scholar
  24. 24.
    Chikkerur S, Serre T, Tan C, Poggio T. What and where: a bayesian inference theory of attention. Vis Res. 2010;50(22):2233–47.PubMedCrossRefGoogle Scholar
  25. 25.
    Churchland MM, Abbott L. Two layers of neural variability. Nat Neurosci. 2012;15(11):1472–4.PubMedCrossRefGoogle Scholar
  26. 26.
    Clavelli A, Karatzas D, Llados J, Ferraro M, Boccignone G. Towards modelling an attention-based text localization process. In: Sanches J, Micó L, Cardoso J, editors. Pattern recognition and image analysis, vol. 7887., Lecture notes in computer scienceBerlin: Springer; 2013. p. 296–303.CrossRefGoogle Scholar
  27. 27.
    deCroon G, Postma E, van den Herik HJ. Adaptive gaze control for object detection. Cognit Comput. 2011;3:264–78.CrossRefGoogle Scholar
  28. 28.
    Desimone R, Duncan J. Neural mechanisms of selective visual attention. Ann Rev Neurosci. 1995;18(1):193–222.PubMedCrossRefGoogle Scholar
  29. 29.
    Dewhurst R, Nyström M, Jarodzka H, Foulsham T, Johansson R, Holmqvist K. It depends on how you look at it: scanpath comparison in multiple dimensions with multimatch, a vector-based approach. Behav Res Methods. 2012;44(4):1079–100.PubMedCrossRefGoogle Scholar
  30. 30.
    Dorr M, Martinetz T, Gegenfurtner K, Barth E. Variability of eye movements when viewing dynamic natural scenes. J Vis. 2010;10(10).Google Scholar
  31. 31.
    Einhäuser W, Rutishauser U, Koch C. Task-demands can immediately reverse the effects of sensory-driven saliency in complex visual stimuli. J Vis. 2008;8(2).Google Scholar
  32. 32.
    Einhäuser W, Spain M, Perona P. Objects predict fixations better than early saliency. J Vis. 2008;8(14). 10.1167/8.14.18.
  33. 33.
    Ellis S, Stark L. Statistical dependency in visual scanning. Hum Factors J Hum Factors Ergonomics Soc. 1986;28(4):421–38.Google Scholar
  34. 34.
    Everitt BS. The analysis of contingency tables, vol. 45. 2nd ed. Boca Raton: CRC Press; 1992.Google Scholar
  35. 35.
    Feng G. Eye movements as time-series random variables: a stochastic model of eye movement control in reading. Cognit Syst Res. 2006;7(1):70–95.CrossRefGoogle Scholar
  36. 36.
    Foulsham T, Teszka R, Kingstone A. Saccade control in natural images is shaped by the information visible at fixation: evidence from asymmetric gaze-contingent windows. Attent Percept Psychophys. 2011;73(1):266–83.CrossRefGoogle Scholar
  37. 37.
    Foulsham T, Underwood G. What can saliency models predict about eye movements? Spatial and sequential aspects of fixations during encoding and recognition. J Vis. 2008;8(2).Google Scholar
  38. 38.
    Frintrop S, Rome E, Christensen H. Computational visual attention systems and their cognitive foundations: a survey. ACM Trans Appl Percept. 2010;7(1):6.CrossRefGoogle Scholar
  39. 39.
    Fuster J. Upper processing stages of the perception-action cycle. Trends Cognit Sci. 2004;8(4):143–5.CrossRefGoogle Scholar
  40. 40.
    Gottlieb J, Balan P. Attention as a decision in information space. Trends Cognit Sci. 2010;14(6):240–8.CrossRefGoogle Scholar
  41. 41.
    Greenwood P, Parasuraman R. Scale of attentional focus in visual search. Percept Psychophys. 1999;61(5):837–59.PubMedCrossRefGoogle Scholar
  42. 42.
    Gros C. Cognition and emotion: perspectives of a closing gap. Cognit Comput. 2010;2(2):78–85.CrossRefGoogle Scholar
  43. 43.
    Hacisalihzade S, Stark L, Allen J. Visual perception and sequences of eye movement fixations: a stochastic modeling approach. IEEE Trans Syst Man Cybern. 1992;22(3):474–81.CrossRefGoogle Scholar
  44. 44.
    Heinke D, Backhaus A. Modelling visual search with the selective attention for identification model (vs-saim): a novel explanation for visual search asymmetries. Cognit Comput. 2011;3(1):185–205.PubMedCentralPubMedCrossRefGoogle Scholar
  45. 45.
    Heinke D, Humphreys GW. Attention, spatial representation, and visual neglect: simulating emergent attention and spatial memory in the selective attention for identification model (saim). Psychol Rev. 2003;110(1):29.PubMedCrossRefGoogle Scholar
  46. 46.
    Heinke D, Humphreys GW. Computational models of visual selective attention: a review. Connect Models Cognit Psychol. 2005;1(4):273–312.Google Scholar
  47. 47.
    Hikosaka O, Nakamura K, Nakahara H. Basal ganglia orient eyes to reward. J Neurophysiol. 2006;95(2):567–84.PubMedCrossRefGoogle Scholar
  48. 48.
    Ho Phuoc T, Guérin-Dugué A, Guyader N. A computational saliency model integrating saccade programming. In: Proceedings of international conference on bio-inspired systems and signal processing, pp. 57–64. Porto, Portugal (2009).Google Scholar
  49. 49.
    Holmqvist K, Nyström M, Andersson R, Dewhurst R, Jarodzka H, Van de Weijer J. Eye tracking: a comprehensive guide to methods and measures. Oxford: Oxford University Press; 2011.Google Scholar
  50. 50.
    Horowitz T, Wolfe J. Visual search has no memory. Nature. 1998;394(6693):575–7.PubMedCrossRefGoogle Scholar
  51. 51.
    Hou X, Zhang L. Saliency detection: a spectral residual approach. In: Proceedings CVPR ’07, vol 1, 2007. pp 1–8.Google Scholar
  52. 52.
    Humphreys GW, Muller HJ. Search via recursive rejection (serr): a connectionist model of visual search. Cognit Psychol. 1993;25(1):43–110.CrossRefGoogle Scholar
  53. 53.
    Ikeda T, Hikosaka O. Reward-dependent gain and bias of visual responses in primate superior colliculus. Neuron. 2003;39(4):693–700.PubMedCrossRefGoogle Scholar
  54. 54.
    Itti L, Koch C, Niebur E. A model of saliency-based visual attention for rapid scene analysis. IEEE Trans Pattern Anal Mach Intell. 1998;20:1254–9.CrossRefGoogle Scholar
  55. 55.
    Keech T, Resca L. Eye movements in active visual search: a computable phenomenological model. Attent Percept Psychophys. 2010;72(2):285–307.CrossRefGoogle Scholar
  56. 56.
    Kimura A, Pang D, Takeuchi T, Yamato J, Kashino K. Dynamic markov random fields for stochastic modeling of visual attention. In: Proceeding ICPR ‘08; 2008. pp. 1–5. IEEE.Google Scholar
  57. 57.
    Knill D, Kersten D, Yuille A. Introduction: a bayesian formulation of visual perception. In: Knill D, Richards W, editors. Perception as Bayesian inference. Cambridge: Cambridge University Press; 1996. p. 1–21.Google Scholar
  58. 58.
    Knill DC, Pouget A. The bayesian brain: the role of uncertainty in neural coding and computation. Trends Neurosci. 2004;27(12):712–9.PubMedCrossRefGoogle Scholar
  59. 59.
    Koch C, Ullman S. Shifts in selective visual attention: towards the underlying neural circuitry. Hum Neurobiol. 1985;4(4):219–27.PubMedGoogle Scholar
  60. 60.
    Koller D, Friedman N. Probabilistic graphical models: principles and techniques. Cambridge: MIT press; 2009.Google Scholar
  61. 61.
    Krause A, Guestrin C. Optimal value of information in graphical models. J Artif Intell Res. 2009;35:557–91.Google Scholar
  62. 62.
    Le Meur O, Baccino T, Roumy A. Prediction of the inter-observer visual congruency (iovc) and application to image ranking. In: Proceedings of the 19th ACM international conference on multimedia, 2011. p. 373–382.Google Scholar
  63. 63.
    Leon MI, Shadlen MN. Effect of expected reward magnitude on the response of neurons in the dorsolateral prefrontal cortex of the macaque. Neuron. 1999;24(2):415–25.PubMedCrossRefGoogle Scholar
  64. 64.
    Logan GD. The code theory of visual attention: an integration of space-based and object-based attention. Psychol Rev. 1996;103(4):603.PubMedCrossRefGoogle Scholar
  65. 65.
    Marat S, Rahman A, Pellerin D, Guyader N, Houzet D. Improving visual saliency by adding face feature mapand center bias. Cognit Comput. 2013;5(1):63–75.CrossRefGoogle Scholar
  66. 66.
    Marr D. Vision: a computational investigation into the human representation and processing of visual information. New York: W.H. Freeman; 1982.Google Scholar
  67. 67.
    Martinez H, Lungarella M, Pfeifer R. Stochastic extension to the attention-selection system for the iCub.: University of Zurich, Tech. Rep. 2008.Google Scholar
  68. 68.
    Maunsell JH. Neuronal representations of cognitive state: reward or attention? Trends Cogn Sci. 2004;8(6):261–5.PubMedCrossRefGoogle Scholar
  69. 69.
    Mozer MC. Early parallel processing in reading: a connectionist approach. Mahwah, NJ: Lawrence Erlbaum Associates, Inc.; 1987.Google Scholar
  70. 70.
    Nagai Y. Stability and sensitivity of bottom-up visual attention for dynamic scene analysis. In: Proceedings of the 2009 IEEE/RSJ international conference on Intelligent robots and systems. IEEE Press; 2009, p. 5198–5203.Google Scholar
  71. 71.
    Najemnik J, Geisler W. Optimal eye movement strategies in visual search. Nature. 2005;434(7031):387–91.PubMedCrossRefGoogle Scholar
  72. 72.
    Navalpakkam V, Itti L. Modeling the influence of task on attention. Vis Res. 2005;45(2):205–31.PubMedCrossRefGoogle Scholar
  73. 73.
    Navalpakkam V, Koch C, Rangel A, Perona P. Optimal reward harvesting in complex perceptual environments. Proc Natl Acad Sci. 2010;107(11):5232–7.PubMedCentralPubMedCrossRefGoogle Scholar
  74. 74.
    Otero-Millan J, Troncoso X, Macknik S, Serrano-Pedraza I, Martinez-Conde S.: Saccades and microsaccades during visual fixation, exploration, and search: foundations for a common saccadic generator. J Vis. 2008;8(14).Google Scholar
  75. 75.
    Over E, Hooge I, Vlaskamp B, Erkelens C. Coarse-to-fine eye movement strategy in visual search. Vis Res. 2007;47:2272–80.PubMedCrossRefGoogle Scholar
  76. 76.
    Palmer J, Verghese P, Pavel M. The psychophysics of visual search. Vis Res. 2000;40(10):1227–68.PubMedCrossRefGoogle Scholar
  77. 77.
    Pessoa L. On the relationship between emotion and cognition. Nat Rev Neurosci. 2008;9(2):148–58.PubMedCrossRefGoogle Scholar
  78. 78.
    Pessoa L, Adolphs R. Emotion processing and the amygdala: from a ’low road’ to ’many roads’ of evaluating biological significance. Nat Rev Neurosci. 2010;11(11):773–83.PubMedCentralPubMedCrossRefGoogle Scholar
  79. 79.
    Peterson MS, Kramer AF, Wang RF, Irwin DE, McCarley JS. Visual search has memory. Psychol Sci. 2001;12(4):287–92.PubMedCrossRefGoogle Scholar
  80. 80.
    Phaf RH, Van der Heijden A, Hudson PT. Slam: a connectionist model for attention in visual selection tasks. Cogn Psychol. 1990;22(3):273–341.PubMedCrossRefGoogle Scholar
  81. 81.
    Platt ML, Glimcher PW. Neural correlates of decision variables in parietal cortex. Nature. 1999;400(6741):233–8.PubMedCrossRefGoogle Scholar
  82. 82.
    Rao RP, Zelinsky GJ, Hayhoe MM, Ballard DH. Eye movements in iconic visual search. Vis Res. 2002;42(11):1447–63.PubMedCrossRefGoogle Scholar
  83. 83.
    Rensink R. The dynamic representation of scenes. Vis Cogn. 2000;1(3):17–42.CrossRefGoogle Scholar
  84. 84.
    Rhee I, Shin M, Hong S, Lee K, Kim S, Chong S. On the levy-walk nature of human mobility. IEEE/ACM Trans Netw. 2011;19(3):630–43.CrossRefGoogle Scholar
  85. 85.
    Robert C. The Bayesian choice from decision-theoretic foundations to computational implementation. Berlin: Springer; 2007.Google Scholar
  86. 86.
    Rothkopf C, Ballard D, Hayhoe M. Task and context determine where you look. J Vis. 2007;7(14).Google Scholar
  87. 87.
    Rutishauser U, Koch C. Probabilistic modeling of eye movement data during conjunction search via feature-based attention. J Vis. 2007;7(6).Google Scholar
  88. 88.
    Scholl B. Objects and attention: the state of the art. Cognition. 2001;80(1–2):1–46.PubMedCrossRefGoogle Scholar
  89. 89.
    Schütz A, Braun D, Gegenfurtner K. Eye movements and perception: a selective review. J Vis. 2011;11(5).Google Scholar
  90. 90.
    Shahab A, Shafait F, Dengel A, Uchida S. How salient is scene text? In: Proceeding 10th IAPR international workshop on document analysis systems (DAS, 2012); 2012. pp. 317–321. IEEE.Google Scholar
  91. 91.
    Shioiri S, Ikeda M. Useful resolution for picture perception as a function of eccentricity. Perception. 1989;18:347–61.PubMedCrossRefGoogle Scholar
  92. 92.
    Snedecor G, Cochran W. Statistical methods. 8th ed. Ames: Iowa State University Press; 1989.Google Scholar
  93. 93.
    Solway A, Botvinick MM. Goal-directed decision making as probabilistic inference: a computational framework and potential neural correlates. Psychol Rev. 2012;119(1):120.PubMedCentralPubMedCrossRefGoogle Scholar
  94. 94.
    Sprague N, Ballard D. Eye movements for reward maximization. In: Advances in neural information processing systems, vol 16. Cambridge: MIT Press; 2003.Google Scholar
  95. 95.
    Sprenger A, Friedrich M, Nagel M, Schmidt CS, Moritz S, Lencer R. Advanced analysis of free visual exploration patterns in schizophrenia. Front Psychol. 2013;4.Google Scholar
  96. 96.
    Stephen D, Mirman D, Magnuson J, Dixon J. Lévy-like diffusion in eye movements during spoken-language comprehension. Phys Rev E. 2009;79(5):056,114.Google Scholar
  97. 97.
    Strasburger H, Rentschler I, Jüttner M. Peripheral vision and pattern recognition: a review. J Vis. 2011;11(5).Google Scholar
  98. 98.
    Sun Y, Fisher R, Wang F, Gomes HM. A computer vision model for visual-object-based attention and eye movements. Comput Vis Image Underst. 2008;112(2):126–42.CrossRefGoogle Scholar
  99. 99.
    Tatler B, Baddeley R, Vincent B. The long and the short of it: spatial statistics at fixation vary with saccade amplitude and task. Vis Res. 2006;46(12):1857–62.PubMedCrossRefGoogle Scholar
  100. 100.
    Tatler B, Hayhoe M, Land M, Ballard D. Eye guidance in natural vision: Reinterpreting salience. J Vis. 2011;11(5).Google Scholar
  101. 101.
    Tatler B, Vincent B. Systematic tendencies in scene viewing. J Eye Mov Res. 2008;2(2):1–18.Google Scholar
  102. 102.
    Tatler B, Vincent B. The prominence of behavioural biases in eye guidance. Vis Cogn. 2009;17(6–7):1029–54.CrossRefGoogle Scholar
  103. 103.
    Toh WL, Rossell SL, Castle DJ. Current visual scanpath research: a review of investigations into the psychotic, anxiety, and mood disorders. Compr Psychiatr. 2011;52(6):567–79.CrossRefGoogle Scholar
  104. 104.
    Torralba A. Contextual priming for object detection. Int J Comp Vis. 2003;53:153–67.CrossRefGoogle Scholar
  105. 105.
    Treisman A. Feature binding, attention and object perception. Philos Trans R Soc Lond Ser B Biol Sci. 1998;353(1373):1295–306.CrossRefGoogle Scholar
  106. 106.
    Treisman AM, Gelade G. A feature-integration theory of attention. Cogn Psychol. 1980;12(1):97–136.PubMedCrossRefGoogle Scholar
  107. 107.
    Underwood G, Foulsham T. Visual saliency and semantic incongruency influence eye movements when inspecting pictures. Q J Exp Psychol. 2006;59(11):1931–49.CrossRefGoogle Scholar
  108. 108.
    Underwood G, Foulsham T, van Loon E, Humphreys L, Bloyce J. Eye movements during scene inspection: a test of the saliency map hypothesis. Eur J Cogn Psychol. 2006;18(03):321–42.CrossRefGoogle Scholar
  109. 109.
    Vinciarelli A, Pantic M, Bourlard H. Social signal processing: survey of an emerging domain. Image Vis Comput. 2009;27(12):1743–59.CrossRefGoogle Scholar
  110. 110.
    Viola P, Jones M. Robust real-time face detection. Int J Comput Vis. 2004;57(2):137–54.CrossRefGoogle Scholar
  111. 111.
    Walther D, Koch C. Modeling attention to salient proto-objects. Neural Netw. 2006;19(9):1395–407.PubMedCrossRefGoogle Scholar
  112. 112.
    Wang H, Pomplun M. The attraction of visual attention to texts in real-world scenes. J Vis. 2012;12(6).Google Scholar
  113. 113.
    Wilming N, Harst S, Schmidt N, König P. Saccadic momentum and facilitation of return saccades contribute to an optimal foraging strategy. PLoS Comput Biol. 2013;9(1):e1002,871.CrossRefGoogle Scholar
  114. 114.
    Wischnewski M, Belardinelli A, Schneider W, Steil J. Where to look next? Combining static and dynamic proto-objects in a TVA-based model of visual attention. Cogn Comput. 2010;2(4):326–43.CrossRefGoogle Scholar
  115. 115.
    Wolfe JM. Guided search 2.0 a revised model of visual search. Psychon Bull Rev. 1994;1(2):202–38.PubMedCrossRefGoogle Scholar
  116. 116.
    Wolfe JM. When is it time to move to the next raspberry bush? foraging rules in human visual search. J Vis. 2013;13(3). doi: 10.1167/13.3.10.
  117. 117.
    Zelinsky GJ. A theory of eye movements during target acquisition. Psychol Rev. 2008;115(4):787.PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Antonio Clavelli
    • 1
  • Dimosthenis Karatzas
    • 1
  • Josep Lladós
    • 1
  • Mario Ferraro
    • 2
  • Giuseppe Boccignone
    • 3
  1. 1.Computer Vision CenterUniversitat Autonoma de Barcelona Edifici OBellaterra (Cerdanyola)Spain
  2. 2.Dipartimento di FisicaUniversitá di TorinoTurinItaly
  3. 3.Dipartimento di InformaticaUniversitá di MilanoMilanItaly

Personalised recommendations