Cognitive Computation

, Volume 7, Issue 1, pp 44–55 | Cite as

On Automatic Diagnosis of Alzheimer’s Disease Based on Spontaneous Speech Analysis and Emotional Temperature

  • K. López-de-Ipiña
  • J. B. Alonso
  • J. Solé-Casals
  • N. Barroso
  • P. Henriquez
  • M. Faundez-Zanuy
  • C. M. Travieso
  • M. Ecay-Torres
  • P. Martínez-Lage
  • H. Eguiraun
Article

Abstract

Alzheimer’s disease (AD) is the most prevalent form of progressive degenerative dementia; it has a high socioeconomic impact in Western countries. Therefore, it is one of the most active research areas today. Alzheimer’s disease is sometimes diagnosed by excluding other dementias, and definitive confirmation is only obtained through a postmortem study of the brain tissue of the patient. The work presented here is part of a larger study that aims to identify novel technologies and biomarkers for early AD detection, and it focuses on evaluating the suitability of a new approach for early diagnosis of AD by noninvasive methods. The purpose is to examine, in a pilot study, the potential of applying machine learning algorithms to speech features obtained from suspected Alzheimer’s disease sufferers in order to help diagnose this disease and determine its degree of severity. Two human capabilities relevant in communication have been analyzed for feature selection: spontaneous speech and emotional response. The experimental results obtained were very satisfactory and promising for the early diagnosis and classification of AD patients.

Keywords

Alzheimer’s disease diagnosis Spontaneous speech Emotion recognition 

References

  1. 1.
    McKahn G, Drachman D, Folstein M, Katzman R, Price D, Stadlan EM. Clinical diagnosis of Alzheimer’s disease: report of the NINCDS-ADRDA workgroup on Alzheimer’s disease. Neurology. 1984;24:939–44.CrossRefGoogle Scholar
  2. 2.
    McKhann GM, Knopman DS, Chertkow H, Hyman BT, Jack CR Jr, Kawas CH, Klunk WE, Koroshetz WJ, Manly JJ, Mayeux R, Mohs RC, Morris JC, Rossor MN, Scheltens P, Carrillo MC, Thies B, Weintraub S, Phelps CH. The diagnosis of dementia due to Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease (PDF). Alzheimers Dement. 2011;7(3):263–9.PubMedCentralPubMedCrossRefGoogle Scholar
  3. 3.
    Pole Van de LA, Flier Van der WM, Hensel A, Gertz HJ, Scheltens P. The effects of age and Alzheimer’s disease on hippocampal volumes, a MRI study. Alzheimers Dement. 2005;1(Supplement 1):51. doi:10.1016/j.jalz.2005.06.205.CrossRefGoogle Scholar
  4. 4.
    Morris JC. The clinical dementia rating (CDR): current version and scoring rules. Neurology. 1993;43(11):2412b–4b.CrossRefGoogle Scholar
  5. 5.
    Diagnostic and Statistical Manual of Mental disorders. Text Revision: DSM-IV-TR. Washington DC, USA: American Psychiatric Association; 2000.Google Scholar
  6. 6.
    Petrella JR, Coleman R, Doraiswamy P. Neuroimaging and early diagnosis of Alzheimer’s disease: a look to the future. Radiology. 2003;226:315–36.PubMedCrossRefGoogle Scholar
  7. 7.
    Wernickand MN, Aarsvold JN. EmissionTomography: TheFundamentals of PET and SPECT. Elsevier New York: Publisher; 2004.Google Scholar
  8. 8.
    Pareto D, Aguiar P, Pavia J, Gispert J, Cot A, Falcon C, Benabarre A, Lomena F, Vieta E, Ros D. Assessment of SPM in per-fusion brain SPECT studies. A numerical simulation study using boot-strap resampling methods. EEE Trans Biomed Eng. 2008;55(7):1849–53.CrossRefGoogle Scholar
  9. 9.
    Álvarez I, Górriz JM, Ramírez J, Salas-Gonzalez D, López M, Segovia F, Padilla P, Gracía C. Projecting independent components of SPECT images for computer aided diagnosis of Alzheimer’s disease. Pattern Recogn Lett. 2010;31(11):1342–7.CrossRefGoogle Scholar
  10. 10.
    Alzheimer’s Association. Available online: http://www.alz.org/research/funding/global_biomarker_consortium.asp.
  11. 11.
    Faundez-Zanuy M, Hussain A, Mekyska J, Sesa-Nogueras E, Monte-Moreno E, Esposito A, Chetouani M, Garre-Olmo J, Abel A, Smekal Z, Lopez-de-Ipiña K. Biometric applications related to human beings: there is life beyond security. Cognit Comput. 2012;5(1):136–51. doi:10.1007/s12559-012-9169-9.CrossRefGoogle Scholar
  12. 12.
    Sesa-Nogueras E, Faundez-Zanuy M, Mekyska J. An information analysis of in-air and on-surface trajectories in online handwriting. Cognit Comput. 2013;4(1):195–205. doi:10.1007/s12559-011-9119-y.Google Scholar
  13. 13.
    Gómez-Vilda P, Rodellar-Biarge V, Nieto-Lluis V, Muñoz-Mulas C, Mazaira-Fernández LM, Martínez-Olalla R, Álvarez-Marquina A, Ramírez-Calvo C, Fernández-Fernández M. Characterizing neurological disease from voice quality biomechanical analysis. Cognit Comput. 2013;. doi:10.1007/s12559-013-9207-2.Google Scholar
  14. 14.
    Henríquez P, Alonso-Hernández JB, Ferrer-Ballester MA, Travieso-González CM, Orozco-Arroyave JR. Global selection of features for nonlinear dynamics characterization of emotional speech. Cognit Comput. 2012;. doi:10.1007/s12559-013-9157-0.Google Scholar
  15. 15.
    López de Ipiña K, Alonso JB, Solé-Casals J, Barroso N, Faundez M, Ecay M, Travieso C, Ezeiza A, Estanga A. Alzheimer’s disease diagnosis based on automatic spontaneous speech analysis. IWAAL special session in challenges in Neuroengineering. In: Proceedings of International Conference on Neural Computation Theory and Applications (NCTA). Barcelona; 2012.Google Scholar
  16. 16.
    Buiza C. Evaluación y tratamiento de los trastornos del lenguaje. Donostia: Matia Fundazioa; 2010.Google Scholar
  17. 17.
    Martinez F, Garcia J, Perez E, Carro J, Anara JM. Patrones de Prosodia expresiva en pacientes con enfermedad de Alzheimer. Psicothema. 2012;24(1):16–21.Google Scholar
  18. 18.
    Hu WT, McMillan C, Libon D, Leight S, Forman M, Lee VMY, Trojanowski JQ, Grossman M. Multimodal predictors for Alzheimer’s disease in non fluent primary progressive aphasia. Neurology. 2010;75(7):595–602.PubMedCentralPubMedCrossRefGoogle Scholar
  19. 19.
    Shimokawa A, Yatomi N, Anamizu S, Torii S, Isono H, Sugai Y, Kohno M. Influence of deteriorating ability of emotional comprehension on interpersonal behaviour in Alzheimer-type dementia. Brain Cogn. 2001;47:423–33.PubMedCrossRefGoogle Scholar
  20. 20.
    Goodkind MS, Gyurak A, McCarthy M, Miller BL, Levenson RW. Emotion regulation deficits in frontotemporal lobar degeneration and Alzheimer’s disease. Psychol Aging. 2010;25(1):30–7. doi:10.1037/a0018519.PubMedCentralPubMedCrossRefGoogle Scholar
  21. 21.
    Cadieux N, Greeve K. Emotion processing in Alzheimer’s disease. J Int Neuropsychol Soc. 1997;3:411–9.PubMedGoogle Scholar
  22. 22.
    Horley K, Reid A, Burnham D. Emotional prosody perception and production in dementia of the Alzheimer’s type. J Speech Lang Hear Res. 2010;53(5):1132–46. doi:10.1044/1092-4388(2010/09-0030.PubMedCrossRefGoogle Scholar
  23. 23.
    Henry JD, Rendell PG, Scicluna A, Jackson M, Phillips LH. Emotion experience, expression, and regulation in Alzheimer’s disease. Psychol Aging. 2009;24(1):252–7.PubMedCrossRefGoogle Scholar
  24. 24.
    Knapp ML. Essentials of nonverbal communication. NY: Holt, Rinehart & Winston; 1980.Google Scholar
  25. 25.
    Cowie R, Douglas-Cowie E, Tsapatsoulis N, Votsis G, Kollias S, Fellenz W, Taylor JG. Emotion recognition in human-computer interaction. IEEE Signal Process Mag. 2001;18(1):32–80.CrossRefGoogle Scholar
  26. 26.
    Plutchnik R. Emotion: A psychoevolutionary synthesis. USA: Harper and Row; 1980.Google Scholar
  27. 27.
    Praat: doing phonetics by computer. Available online: www.fon.hum.uva.nl/praat.
  28. 28.
    Voice activity detector algorithm (VAD). Available online: www.mathwork.com.
  29. 29.
    Solé J, Zaiats V. A non-linear VAD for noisy environment. Cognit Comput. 2010;2(3):191–8.CrossRefGoogle Scholar
  30. 30.
    Rahman MM, Bhuiyan MA. Continuous bangla speech segmentation using short-term speech features extraction approaches. Int J Adv Computer Sci Appl. 2012;3–11:131–8.Google Scholar
  31. 31.
    Pao TL, Chien CS, Yen JH, Chen YT, Cheng YM. Continuous tracking of user emotion in mandarin emotional speech. In: Proceedings of 3rd International Conference on International Information Hiding and Multimedia Signal Processing (IIH-MSP’07), Splendor Kaohsiung, Taiwan; 2007 November 26–28; 1:47–52.Google Scholar
  32. 32.
    Petrushin VA. Emotion in speech: recognition and application to call centers. In: Proceedings, Conference on Artificial Neural Networks in Engineering (ANNIE’99), St. Louis, Missouri, USA; 1999 November 7–10; 7–10.Google Scholar
  33. 33.
    Lee CM, Narayanan S. Emotion recognition using a data-driven fuzzy interference system. In: Proceedings of 8th European Conference on Speech Communication and Technology (ECSCT’03), Geneva, Switzerland; 2003 September 1–4; 157–160.Google Scholar
  34. 34.
    Kwon OW, Chan K, Hao J, Lee TW. Emotion recognition by speech signals. In: Proceedings of 8th European Conference on Speech Communication and Technology (ECSCT’03), Geneva, Switzerland; 2003 September 1–4; 125–128.Google Scholar
  35. 35.
    De Cheveigné A, Kawahara H. YIN, a fundamental frequency estimator for speech and music. J Acoust Soc Am. 2002;111(4):1917–30.PubMedCrossRefGoogle Scholar
  36. 36.
    Alonso J, De León J, Alonso I, Ferrer MA. Automatic detection of pathologies in the voice by HOS base parameters. J Appl Signal Process. 2001;4:275–84.CrossRefGoogle Scholar
  37. 37.
    Chang CC, Lin CJ. LIBSVM: a library for support vector machines; 2001. Available online: http://www.csie.ntu.edu.tw/~cjlin/libsvm.
  38. 38.
    WEKA. Available online: http://www.cs.waikato.ac.nz/ml/weka/.
  39. 39.
    Picard R, Cook D. Cross-validation of regression models. J Am Stat Assoc. 1984;79(387):575–83.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • K. López-de-Ipiña
    • 1
  • J. B. Alonso
    • 2
  • J. Solé-Casals
    • 3
  • N. Barroso
    • 1
  • P. Henriquez
    • 2
  • M. Faundez-Zanuy
    • 4
  • C. M. Travieso
    • 2
  • M. Ecay-Torres
    • 5
  • P. Martínez-Lage
    • 5
  • H. Eguiraun
    • 1
    • 6
  1. 1.Systems Engineering and Automation DepartmentUniversity of the Basque CountryDonostiaSpain
  2. 2.IDeTICUniversidad de Las Palmas de Gran CanariaLas PalmasSpain
  3. 3.Digital Technologies Group University of VicCataloniaSpain
  4. 4.Escola Universitària Politècnica de Mataró (UPC)BarcelonaSpain
  5. 5.CITA-Alzheimer FoundationDonostiaSpain
  6. 6.Research Center for Experimental Marine Biology and Biotechnology, Plentzia Marine StationUniversity of the Basque CountryPlentziaSpain

Personalised recommendations