Cognitive Computation

, Volume 5, Issue 4, pp 558–565 | Cite as

Automatic Apnea Identification by Transformation of the Cepstral Domain

  • Carlos M. Travieso
  • Jesús B. Alonso
  • Marcos del Pozo-Baños
  • Jaime R. Ticay-Rivas
  • Karmele Lopez-de-Ipiña
Article

Abstract

A new approach based on the transformation of the Cepstral domain is developed on this work. This approach reaches an automatic diagnosis for the syndrome of obstructive sleep apnea that includes a specific block for the removal of electrocardiogram (ECG) artifacts and the R wave detection. The system is modeled by a transformation of the Cepstral domain sequence using hidden Markov model (HMM). The final decision is done with two different approaches: one based on HMM as a classifier and a second one based on support vector machines classification and a parameterization based on the transformation of HMM by a kernel. The later approach reached results up to 99.23 %, using all test samples from Physionet Apnea-ECG Database.

Keywords

Automatic apnea detection Artifacts removal Hidden Markov model Kernel building Machine learning Pattern recognition Nonlinear processing 

References

  1. 1.
    Baumel MJ, Maislin G, Pack AI. Population and occupational screening for obstructive sleep apnea: are we there yet? Am J Respir Crit Care Med. 1997;155(1):9–14.PubMedCrossRefGoogle Scholar
  2. 2.
    Guilleminault C, Hoed J, Mitler MN, editors. Clinical overview of the sleep apnea syndromes Sleep apnea syndromes. New York: Alan R Liss; 1985.Google Scholar
  3. 3.
    Kimura H, Talsumi K, Masuyama S, Kuriyama T. Diagnosis and treatment of sleep apnea syndrome in Japan comparison with other countries. Technical report, Nippon-Kyobu-Shikkan-Gakkai-Zasshi, 1995.Google Scholar
  4. 4.
    Moody GB, Mark RG, Goldberger A, Penzel T. Stimulating rapid research advances via focused competition: the computers in cardiology challenge 2000. Comput Cardiol. 2000;27:207–10.Google Scholar
  5. 5.
    Isa SM, Fanany MI, Jatmiko W, Arymurthy AM. Sleep apnea detection from ECG signal: analysis on optimal features, principal components, and nonlinearity. In: 5th international conference on bioinformatics and biomedical engineering, 2011, pp. 1–4.Google Scholar
  6. 6.
    Avci C, Besli S, Akbas A. Performance of the EDR methods: evaluations using the mean and instantaneous respiration rates. In: 5th international conference on bioinformatics and biomedical engineering, 2011, pp. 1–5.Google Scholar
  7. 7.
    Thomas RJ, Mietus JE. Mapping sleep using coupled biological oscillations. In: Annual international conference of the IEEE on engineering in medicine and biology society, 2011, pp. 1479–482.Google Scholar
  8. 8.
    Ali SQ-u-A, Jeoti V. ECG and blood oxygen level based Sleep Apnea study and detection. In: 2010 IEEE EMBS conference on biomedical engineering and sciences, 2010, pp. 285–90.Google Scholar
  9. 9.
    Bsoul M, Minn H, Tamil L. Apnea MedAssist: real-time sleep apnea monitor using single-lead ECG. IEEE Trans Inf Technol Biomed. 2011;15(3):416–27.PubMedCrossRefGoogle Scholar
  10. 10.
    Shinar Z, Baharav A, Akselrod S. Obstructive sleep apnea detection based on electrocardiogram analysis. Comput Cardiol. 2000;27:757–60.Google Scholar
  11. 11.
    McNames JN, Fraser AM. Obstructive sleep apnea classification based on spectrogram patterns in the electrocardiogram. Comput Cardiol. 2000;27:749–52.Google Scholar
  12. 12.
    Drinnan M, Allen J, Langley P, Murray A. Detection of sleep apnea from frequency analysis of heart rate variability. Comput Cardiol. 2000;27:259–62.Google Scholar
  13. 13.
    de Chazal P, Heneghan C, Sheridan E, Reilly R, Nolan P, O’Malley M. Automated processing of the single-lead electrocardiogram for the detection of obstructive sleep apnea. IEEE Trans Biomed Eng. 2003;50(6):686–96.PubMedCrossRefGoogle Scholar
  14. 14.
    Quiceno-Manrique AF, Alonso-Hernandez JB, Travieso-Gonzalez CM, Ferrer-Ballester MA, Castellanos-Dominguez G. Detection of obstructive sleep apnea in ECG recordings using time-frequency distributions and dynamic features. In: Annual international conference of the IEEE engineering in medicine and biology EMBC’09, 2009, pp. 5559–562.Google Scholar
  15. 15.
    Knight B, Pelosi F, Michaud G, Strickberger S, Morady F. Brief report: clinical consequences of electrocardiographic artefact mimicking ventricular tachycardia. N Engl J Med. 1999;341(17):1249–55.CrossRefGoogle Scholar
  16. 16.
    Aghakabi A, Zokaee S. Fusing dorsal hand vein and ECG for personal identification. In: 2011 international conference on electrical and control engineering (ICECE), 2011, pp. 5933–936.Google Scholar
  17. 17.
    Benesty J, Sondhi MM, Huang Y, editors. Handbook of speech processing. Berlin: Springer; 2008.Google Scholar
  18. 18.
    Rabiner L, Juang BH, editors. Fundamentals of speech recognition. Englewood Cliffs: Prentice Hall; 1993.Google Scholar
  19. 19.
    Rabiner LR. A tutorial on hidden markov models and selected applications in speech recognition. Proc IEEE. 1989;77(2):257–86.CrossRefGoogle Scholar
  20. 20.
    Jaakkola T, Diekhans M, Haussler D. A discriminative framework for detecting remote protein homologies. J Comput Biol. 2000;7(1–2):95–114.PubMedCrossRefGoogle Scholar
  21. 21.
    Bin Z, Yong L, Shao-Wei X. Support vector machine and its application in handwritten numeral recognition. In: Proceedings of the 15th international conference on pattern recognition, vol 2, 2000, pp. 720–23.Google Scholar
  22. 22.
    Penzel T, Moody GB, Mark RG, Goldberger AL, Peter JH, The apnea-ecg database. In: Proceedings of the computers in cardiology, 2000, pp 255–58.Google Scholar
  23. 23.
    Bhandaria A, Izdebskia K, Huanga C, Yan Y. Comparative analysis of normal voice characteristics using simultaneous electroglottography and high speed digital imaging. Biomed Signal Process Control. 2012;7:20–6.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Carlos M. Travieso
    • 1
  • Jesús B. Alonso
    • 1
  • Marcos del Pozo-Baños
    • 1
  • Jaime R. Ticay-Rivas
    • 1
  • Karmele Lopez-de-Ipiña
    • 2
  1. 1.Signals and Communications Department, Institute for Technological Development and Innovation in Communications (IDETIC)University of Las Palmas de Gran CanariaLas Palmas de Gran CanariaSpain
  2. 2.System Engineering and Automation DepartmentUniversity of the Basque CountryDonostiaSpain

Personalised recommendations