Cognitive Computation

, Volume 5, Issue 4, pp 551–557 | Cite as

Meteorological Prediction Implemented on Field-Programmable Gate Array

  • José L. Vásquez
  • Santiago T. Pérez
  • Carlos M. Travieso
  • Jesús B. Alonso
Article

Abstract

In this work, a temperature predictor has been designed. The prediction is made by a multilayer perceptron neural network. Initially, the floating-point algorithm was evaluated. Afterward, the fixed-point algorithm was designed on a field-programmable gate array. The architecture was fully parallelized, and a maximum delay of 74 ns was obtained. The design tool used is a Xilinx system generator.

Keywords

Neural network FPGA Temperature prediction Simulink System generator Floating point Fixed point VHDL Verilog 

References

  1. 1.
    Taylor JW, Buizza R. Neural network load forecasting with weather ensemble predictions. Power Syst IEEE Trans. 2002;17(3):626–32.CrossRefGoogle Scholar
  2. 2.
    Lee R, Liu J. iJADE WeatherMAN: a weather forecasting system using intelligent multiagent-based fuzzy neuro network, systems, man, and cybernetics, part C: applications and reviews. IEEE Trans. 2004;34(3):369–77.Google Scholar
  3. 3.
    Sharma A, Manoria M. A weather forecasting system using concept of soft computing: a new approach. In: International conference on advanced computing and communications, 2006 (ADCOM 2006). p. 353–6, 20–23 Dec 2006.Google Scholar
  4. 4.
    Yona A, Senjyu T, Saber AY, Funabashi T, Sekine H, Kim C-H. Application of neural network to one-day-ahead 24 hours generating power forecasting for photovoltaic system. In: International conference on intelligent systems applications to power systems, 2007 (ISAP 2007), p. 1–6, 5–8 Nov 2007.Google Scholar
  5. 5.
    Wittmann M, Breitkreuz H, Schroedter-Homscheidt M, Eck M. Case studies on the use of solar irradiance forecast for optimized operation strategies of solar thermal power plants. Sel Topics Appl Earth Observ Rem Sens IEEE J. 2008;1(1):18–27.CrossRefGoogle Scholar
  6. 6.
    Christopher M. Bishop, pattern recognition and machine learning. Berlin: Springer; 2006.Google Scholar
  7. 7.
    Tosini M. Sistema basado en redes neuronales digitales aplicado a la predicción climática en ambientes con microclima controlado. JCS&T. 2007;7(1):114–5.Google Scholar
  8. 8.
    Peña D. Análisis de series temporales. Alianza Editorial; ISBN: 84-206-9128-3; España; 2010.Google Scholar
  9. 9.
    Bautista E. Predicción de Múltiples Puntos de Series de Tiempo Utilizando Support Vector Machines. Computación y Sistemas. 7(3), ISSN 1405-5546.Google Scholar
  10. 10.
    Trejos J. Presentación de las redes neuronales al análisis de datos. Costa Rica: Métodos Matemáticos aplicados a las Ciencias. VII y VIII Simposios; 1994.Google Scholar
  11. 11.
    Alonso JB, León J, Alonso I, Ferrer MA. Automatic detection of pathologies in the voice by HOS based parameters. EURASIP J Appl Signal Proc. 2001;4:275–84.CrossRefGoogle Scholar
  12. 12.
    Henríquez P, Alonso JB, Ferrer MA, Travieso CM, Godino-Llorente JI, Diaz-de-Maria, F. Characterization of healthy and pathological voice through measures based on nonlinear dynamics. In: IEEE transactions on audio, speech and language processing, vol. 17, no. 6, p. 1186–95, USA, ISSN: 1558-7916, August 2009.Google Scholar
  13. 13.
    Tarade RS, Katti PK. A comparative analysis for wind speed prediction, 2011 international conference on energy, automation, and signal (ICEAS); 2011, p. 1–6. doi:10.1109/ICEAS.2011.6147167.
  14. 14.
    Tarade RS, Dr. Prade, Katti K. Wind speed prediction using neural network & auto regressive integrated moving average (ARIMA). Paper presented during 6–7 June 2011, All India seminar on micro grids in Indian power system, arranged by, The Institution of Engineers (India), Pune.Google Scholar
  15. 15.
    Dutta B, Mitra S. Better prediction of humidity using artificial neural network, 2011 In: Fourth international conference on the applications of digital information and web technologies (ICADIWT); 2011 p. 59–64, doi:10.1109/ICADIWT.2011.6041395.
  16. 16.
    Vasak M, Gulin M, Vic JC, Nikolic D, Pavlovic T, Peric N. Meteorological and weather forecast data-based prediction of electrical power delivery of a photovoltaic panel in a stochastic framework. In: Proceedings of the 34th international convention MIPRO; 2011, p. 733–8.Google Scholar
  17. 17.
    Zeng J, Qiao W. Short-term solar power prediction using an RBF neural network, 2011 In: IEEE power and energy society general meeting; 2011, p. 1–8, doi:10.1109/PES.2011.6039204.
  18. 18.
    Badescu V. Modeling solar radiation at the earth surface. 1st ed. Berlin: Springer; 2008.CrossRefGoogle Scholar
  19. 19.
    Chen R, Kang E, Ji X, Yang J, Wang J. An hourly solar radiation model under actual weather and terrain conditions: a case study in Heihe river basin. Energy. 2007;32:1148–57.CrossRefGoogle Scholar
  20. 20.
    Almakaleh A. New method for energy prediction of solar energy collectors systems in Yemen. In: Proceedings of ISES solar world congress 2007: Solar energy and human settlement; 2009, p. 2607–11.Google Scholar
  21. 21.
    Kasten F, Czeplak G. Solar and terrestrial radiation dependent on the amount and type of cloud. Sol Energy. 1980;24:177–89.CrossRefGoogle Scholar
  22. 22.
    Paolik C, Voyant C, Muselli M, Nivet M. Solar radiation forecast-ing using ad-hoc time series pre-processing and neural networks, In: Proceedings of 5th international conference on emerging intelligent computing technology and applications, Ulsan, South Korea; 2009, p. 898–907.Google Scholar
  23. 23.
    Box G, Jenkins GM, Reinsel GC. Time series analysis: forecasting and control, 3rd edn. Prentice-Hall; 1994.Google Scholar
  24. 24.
    Reikard G. Predicting solar radiation at high resolutions: a comparison of time series forecasts. Sol Energy. 2009;83(3):342–9.CrossRefGoogle Scholar
  25. 25.
    Torres JL, Garcia A, De Blas M, De Francisco A. Forecast of hourly average wind speed with ARMA models in Navarre (Spain). Sol Energy. 2005;79:65–77.CrossRefGoogle Scholar
  26. 26.
    Iqdour R, Zeroual A. A rule based fuzzy model for the prediction of daily solar radiation. In: Proceeding international conference on industrial technology, vol. 3. 2004. p. 1482–7.Google Scholar
  27. 27.
    Gapizzi G, Bonanno F, Napoli C. A wavelet based prediction of wind and solar energy for long-term simulation of integrated generation systems. In: Proceedings of 2010 international symposium on power electronics, electrical drives, automation and motion (SPEEDAM 2010), p. 586–2, June, 2010.Google Scholar
  28. 28.
    Ahhi A, Shamisi M, Jama M. Prediction of monthly average daily global radiation in Al Ain city—UAE using artificial neural networks. In: Proceedings of 4th Wseas international conference on renewable energy sources (RES 10), pp. 109–113, Kantaoui, Sousse, Tunisia, May 3–6 2010.Google Scholar
  29. 29.
    Ruck DW, Rogers SK, Kabrisky M, Oxley ME, Suter BW. The multilayer perceptron as an approximation to a Bayes optimal discriminant function. IEEE Trans Neural Netw. 1990;1(4):296–8.PubMedCrossRefGoogle Scholar
  30. 30.
    Matlab Neural Network Toolbox, http://www.mathworks.com/products/neuralnet/, active on July 1st 2011.
  31. 31.
    Colina E, Rivas F. Redes Neuronales Artificiales in Introducción a las Técnicas de Computación Inteligente. Jose Aguilar and Francklin Rivas Editors, Editorial Meritec; 2001.Google Scholar
  32. 32.
    Maxfield C. The design Warrior’s Guide to FPGAs. Elsevier; 2004.Google Scholar
  33. 33.
    Xilinx System Generator, http://www.xilinx.com/tools/sysgen.htm, active on July 1st 2011.
  34. 34.
    Matlab Simulink, http://www.mathworks.com/products/simulink/, active on July 1st 2011.
  35. 35.
    Xilinx ISE, http://www.xilinx.com/tools/webpack.htm, active on July 1st 2011.
  36. 36.
    Palnitkar S. Verilog HDL. Prentice Hall; 1996.Google Scholar
  37. 37.
    Volnei A. Pedroni: circuit design with VHDL. The MIT Press; 2004.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • José L. Vásquez
    • 1
  • Santiago T. Pérez
    • 2
  • Carlos M. Travieso
    • 2
  • Jesús B. Alonso
    • 2
  1. 1.Department of Computer Science, Sede del AtlánticoUniversity of Costa RicaTurrialbaCosta Rica
  2. 2.Signals and Communications Department, Institute for Technological Development and Innovation in CommunicationsUniversity of Las Palmas de Gran CanariaLas Palmas de Gran CanariaSpain

Personalised recommendations