Cognitive Computation

, Volume 4, Issue 2, pp 181–194 | Cite as

Qualitative Information Processing in Tripartite Synapses: A Hypothetical Model

  • Bernhard J. MitterauerEmail author


A new model of synaptic information processing is proposed. It focuses on tripartite synapses and the glial network, called syncytium. A tripartite synapse consists not only of the presynapse and postsynapse as neuronal components, but also of the glial components the astrocyte and its syncytium. It is hypothesized that in the astrocytic syncytium, intentional programs may be generated that determine the expression of astrocytic receptors. Intentional programing is formalized as so-called negative language, which can be transformed into a place structure integrated as astrocytic receptors. Based on the formalism of tritogrammatics, astrocytic receptors embody places of the same or different qualities for the occupancy with cognate neurotransmitters. Dependent on the pattern of astrocytic receptors, astrocytes may be capable of qualitatively modifying synaptic information processing. Although the model presented is experimentally supported, there are methodical limits in experimental biological brain research. Hence, the technical implementation may represent a real and promising alternative.


Tripartite synapses Astrocytic syncytium Astrocytic receptors Intentional programing Qualitative information processing 



This paper is dedicated to Gotthard Guenther, the founder of the transclassic logic. I am very grateful to Birgitta Kofler-Westergren for preparing the final version of the paper.


  1. 1.
    Auld DS, Robitaille R. Glial cells and neurotransmission: an inclusive view of synaptic function. Neuron. 2003;40:389–400.PubMedCrossRefGoogle Scholar
  2. 2.
    Pereira A, Furlan FA. Astrocytes and human cognition: modeling information integration and modulation of neuronal activity. Prog Neurobiol. 2010;92:405–20.PubMedCrossRefGoogle Scholar
  3. 3.
    Parpura V, Zorec R. Gliotransmission: exocytotic release from astrocytes. Brain Res Rev. 2010;63:83–92.PubMedCrossRefGoogle Scholar
  4. 4.
    McCarty KD, Salm AK. Pharmacologically-distinct subsets of astroglia can be identified by their calcium response to neuroligands. Neuroscience. 1991;2(/3):325–33.CrossRefGoogle Scholar
  5. 5.
    Volterra A, Meldolesi J. Astrocytes, from brain glue to communication elements: the revolution continues. Nat Rev Neurosci. 2005;6:626–40.PubMedCrossRefGoogle Scholar
  6. 6.
    Halassa MM, Haydon PG. Integrated brain circuits: astrocytic networks modulate neuronal activity and behaviour. Annu Rev Phys. 2010;72:335–55.CrossRefGoogle Scholar
  7. 7.
    Haydon PG, Carmignoto G. Astrocyte control of synaptic transmission and neurovascular coupling. Phys Rev. 2006;86:1009–31.CrossRefGoogle Scholar
  8. 8.
    Nedergaard M, Ransom B, Goldman SA. New roles for astrocytes: redefining the functional architecture of the brain. Trends Neurosci. 2003;25:523–30.CrossRefGoogle Scholar
  9. 9.
    Halassa MM, Fellin T, Takano H, Dong J, Haydon PG. Synaptic islands defined by the territory of a single astrocyte. J Neurosci. 2007;27:6473–7.PubMedCrossRefGoogle Scholar
  10. 10.
    Verkhratsky A, Butt A. Glial neurobiology. West Sussex: Wiley; 2007.CrossRefGoogle Scholar
  11. 11.
    Dermietzel R, Spray DC. From neuroglue to glia: a prologue. Glia. 1998;24:1–7.PubMedCrossRefGoogle Scholar
  12. 12.
    Araque A, Parpura V, Sanzgiri RP, Haydon PG. Tripartite synapses: glia, the unacknowledged partner. Trends Neurosci. 1999;22:208–15.PubMedCrossRefGoogle Scholar
  13. 13.
    Ransom BR, Ye Z. Gap junctions and hemichannels. In: Kettenmann H, Ransom BR, editors. Neuroglia. Oxford: Oxford University Press; 2005. p. 177–89.Google Scholar
  14. 14.
    Aquinas TST. In: Martin C, editor. The philosophy of thomas aquinas: introductory readings. New York: Routledge; 1988, p. 38–49.Google Scholar
  15. 15.
    Brentano F. Psychology from an empirical standpoint. London: Routledge; 1995.Google Scholar
  16. 16.
    Runes DD. Dictionary of philosophy. Ames: Littlefield, Adams and Co; 1959.Google Scholar
  17. 17.
    Searle JR. Mind: a brief introduction. Oxford: University Press; 2004.Google Scholar
  18. 18.
    Dennett D. The intentional stance. Cambridge, MA: Little, Brown; 1978.Google Scholar
  19. 19.
    Bennett MR, Hacker PMS. Philosophical foundations of neuroscience. Malden: Blackwell Publishing; 2003.Google Scholar
  20. 20.
    Kelso JAS. Fluctuations in the coordination dynamics of brain and behavior. In: Arhem P, Blomberg P, Liljenstroem H, editors. Disorder versus order in brain function. Singapore: World Scientific Publishing; 2000. p. 185–203.CrossRefGoogle Scholar
  21. 21.
    Werner G. Siren call of metapher: subventing the proper task of system neuroscience. J Integr Neurosci. 2004;3:245–52.PubMedCrossRefGoogle Scholar
  22. 22.
    McCulloch WS. Commentary. In: Thayer L, editor. Communication: theory and research. Springfield: Thomas Publisher; 1966. p. 51–8.Google Scholar
  23. 23.
    Fogel LJ. On the design of conscious automata. Clearinghouse: Federal Scientific and Technical Information; 1966.Google Scholar
  24. 24.
    Guenther G. Information, communication and many-valued logic. In: Memorias del XIII congress international de filosofia, vol 5. Mexico: Universidad Nacional Autonoma de Mexico; 1964. p. 143–157.Google Scholar
  25. 25.
    Guenther G. Martin Heidegger und die Weltgeschichte des Nichts. In: Guenther G, editor. Beiträge zur Grundlegung einer operationsfähigen Dialektik. Hamburg: Meiner Verlag; 1980. p. 260–96.Google Scholar
  26. 26.
    Lewontin R. The triple helix. In: Gene, organism, and environment. Massachusetts: Harvard University Press; 2000.Google Scholar
  27. 27.
    Eagleman DM. The where and when of intention. Science. 2004;303:1144–6.PubMedCrossRefGoogle Scholar
  28. 28.
    Edelman G. Neural Darwinism: the theory of neuronal group selection. New York: Basic Books; 1987.Google Scholar
  29. 29.
    Robertson JM. The astrocentric hypothesis: proposed role of astrocytes in consciousness and memory function. J Phys. 2002;96:251–5.Google Scholar
  30. 30.
    Pasti L, Volterra A, Pozzan T, Carmignoto G. Intracellular calcium oscillations in astrocytes: a highly plastic, bidirectional form of communication between neurons and astrocytes in situ. J Neurosci. 1997;17:7817–30.PubMedGoogle Scholar
  31. 31.
    Zonta M, Carmignoto G. Calcium oscillations encoding neuron-to-astrocyte communication. J Phys. 2002;96:193–8.Google Scholar
  32. 32.
    Perera G, Araque A. Glial calcium signaling and neuron-glia communication. Cell Calcium. 2005;48:375–82.CrossRefGoogle Scholar
  33. 33.
    Iacoboni M, Molnar-Szakacs I, Gallese V, Buccino G, Mazziotta JC, Rizzolatti G. Grasping the intentions of others with one’s own mirror neuron system. PLoS Biol. 2005;3(3):e79. doi: 10.1371/journal.pbio.0030079.PubMedCrossRefGoogle Scholar
  34. 34.
    Thomas GG. On permutographs. Supplemente ai rendiconti del Circulo Matematico di Palermo 1982; Serie II: 2.Google Scholar
  35. 35.
    Mitterauer B. Computer system for simulating reticular formation operation. United States Patent 1988; 4,783,741.Google Scholar
  36. 36.
    Thomas G, Mitterauer B. Computer for simulating complex processes. United States Patent 1989; 4,829,451.Google Scholar
  37. 37.
    Giaume C, Venance L. Intercellular calcium signalling and gap junctional communication in astrocytes. Glia. 1998;24:50–64.PubMedCrossRefGoogle Scholar
  38. 38.
    Newman EA. Modulation of neuronal activity by glial cells in the retina. In: Volterra A, Magistretti PJ, Haydon PG, editors. The tripartite synapse. Glia in synaptic transmission. Oxford: Oxford University Press; 2002. p. 199–211.Google Scholar
  39. 39.
    Baumann N, Pham-Dinh D. Biology of oligodendrocyte and myelin in the mammalian nervous system. Phys Rev. 2001;81:871–927.Google Scholar
  40. 40.
    Penes MC, Li X, Nagy JI. Expression of zonula occludens-1 (ZO-1) and the transcription factor CO-1-associated nucleic acid-binding protein (ZONAB)-MsY3 in glial cells and colocalization at oligodendrocyte and astrocyte gap junctions in mouse brain. Eur J Neurosci. 2005;22:404–418.Google Scholar
  41. 41.
    Zoidl G, Dermietzel R. On the search for the electrical synapse: a glimpse at the future. Cell Tiss Res. 2002;310:137–42.CrossRefGoogle Scholar
  42. 42.
    Nagy JI, Dudek FE, Rash JE. Update on connexins and gap junctions in neurons and glia in the mammalian nervous system. Brain Res Rev. 2004;47:191–215.PubMedCrossRefGoogle Scholar
  43. 43.
    Rouach N, Koulakoff A, Giaume C. Neurons set the tone of gap junctional communication in astrocytic networks. Neurochem Int. 2004;45:265–72.PubMedCrossRefGoogle Scholar
  44. 44.
    Mitterauer B. Where and how could intentional programs be generated in the brain? A hypothetical model based on glial-neuronal interactions. BioSystems. 2007;88:101–12.PubMedCrossRefGoogle Scholar
  45. 45.
    Hebb DO. The organization of behaviour. New York: Wiley; 1949.Google Scholar
  46. 46.
    Halassa MM, Fellin T, Haydon PG. Tripartite synapses: roles for astrocytic purins in the control of synaptic physiology and behavior. Neuropharm. 2009;57:343–6.CrossRefGoogle Scholar
  47. 47.
    Newman EA. Glia and synaptic transmission. In: Kettenmann H, Ransom BR, editors. Neuroglia. Oxford: Oxford University Press; 2005. p. 355–66.Google Scholar
  48. 48.
    Stellwagen D, Malenka RC. Synaptic scaling mediated by glial TNF-alpha. Nature. 2006;440:1054–9.PubMedCrossRefGoogle Scholar
  49. 49.
    Mitterauer B. An interdisciplinary approach towards a theory of consciousness. BioSystems. 1998;45:99–121.PubMedCrossRefGoogle Scholar
  50. 50.
    Oberheim NA, Wang X, Goldman S, Nedergaard M. Astrocytic complexity distinguishes the human brain. Trends Neurosci. 2006;29:547–53.PubMedCrossRefGoogle Scholar
  51. 51.
    Kettenmann H, Steinhäuser C. Receptors for neurotransmitters and hormones. In: Kettenmann H, Ransom BR, editors. Neuroglia. Oxford: Oxford University Press; 2005. p. 131–45.Google Scholar
  52. 52.
    Santello M, Volterra A. Astrocytes as aide-mémoires. Nature. 2010;463:169–70.PubMedCrossRefGoogle Scholar
  53. 53.
    Thomas GG. Introduction to Kenogrammatics. Proceedings of the 13th Winter School on Abstract Analysis, section of topology. Rendiconti del Circolo Matematico di Palermo 1985; 11: 113–123.Google Scholar
  54. 54.
    Hirrlinger J, Hulsmann S, Kirchhoff F. Astroglial processes show spontaneous motility at active synaptic terminals in situ. Eur J Neurosci. 2004;20:2235–9.PubMedCrossRefGoogle Scholar
  55. 55.
    Haber M, Zhou L, Murai KK. Cooperative astrocyte and dendritic spine dynamics at hippocampal excitatory synapses. J Neurosci. 2006;26:8887–91.Google Scholar
  56. 56.
    Guenther G. Cybernetic ontology and transjunctional operations. In: Yovits MC, Jacobi GT, Goldstein GD, editors. Selforganizing systems. Washington DC: Spartan Books; 1962. p. 313–92.Google Scholar
  57. 57.
    Perea G, Araque A. Glial calcium signalling and neuron-glia communication. Cell Calcium. 2005;38:375–82.PubMedCrossRefGoogle Scholar
  58. 58.
    Cooper MS. Intercellular signalling in neuronal-glial networks. BioSystems. 1995;34:65–85.PubMedCrossRefGoogle Scholar
  59. 59.
    Newman EA, Zahs KR. Calcium waves in retinal glial cells. Science. 1997;275:844–6.PubMedCrossRefGoogle Scholar
  60. 60.
    Mitterauer B, Garvin AM, Dirnhofer R. The sudden infant death syndrome: a neuromolecular hypothesis. Neuroscientist. 2000;6:154–8.CrossRefGoogle Scholar
  61. 61.
    Parri HR, Gould TM, Crunelli V. Spontaneous astrocytic Ca2+ oscillations in situ drive NMDAR-mediated neuronal excitation. Nat Neurosci. 2001;4:803–12.PubMedCrossRefGoogle Scholar
  62. 62.
    Mitterauer B. Computation system for the simulation of the cerebral cortex. US-Patent Nr. 1995; 5,410,716.Google Scholar
  63. 63.
    Mitterauer B. Computer system, particularly for simulation of human perception via sense organs. US-Patent Nr. 2004; 6,697,789B2.Google Scholar
  64. 64.
    Volman V, Ben-Jacob E, Levine H. The astrocyte as a gatekeeper of synaptic information transfer. Neural Comput. 2007;19:303–26.PubMedCrossRefGoogle Scholar
  65. 65.
    Nadkarni S, Jung P, Levine H. Astrocytes optimize the synaptic transmission of information. PLoS Comput Biol. 2008. doi: 10.1371/journal.pobi1000088.
  66. 66.
    Goldberg M, DePitta M, Volman V, Berry H, Ben-Jacob E. Nonlinear gap junctions enable long-distance propagation of pulsating calcium waves in astrocyte networks. PLoS Comput Biol. 2010;6:e10010909.CrossRefGoogle Scholar
  67. 67.
    DePitta M, Volman V, Levine H, Pioggia G, DeRossi D, Ben-Jacob E. Coexistence of amplitude and frequency modulations in intracellular dynamics. Phys Rev 2008; E77,030903(R).Google Scholar
  68. 68.
    Mitterauer B. Downregulation and upregulation of glial connexins may cause synaptic imbalances responsible for the pathophysiology of bipolar disorder. CNS Neuroscience and Therapeutics 2010; doi: 10.1111/j.1755-5949.2010.00178x.
  69. 69.
    Mitterauer B. Synaptic imbalances in endogenous psychoses. BioSystems. 2010;100:113–21.PubMedCrossRefGoogle Scholar
  70. 70.
    Porto-Pazos AB, Veiguela N, Mesejo P, Navarrete M, Alvarellos A, Ibáňes O, et al. Artificial astrocytes improve neural network performance. PloS. 2011;6(4):e19109.Google Scholar
  71. 71.
    McCulloch WS. Mysterium iniquitatis of sinful man aspiring into the place of God. Sci Mon. 1955;80:35–9.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Volitronics-Institute for Basic ResearchPsychopathology and Brain Philosophy, Gotthard Guenther ArchivesWals/SalzburgAustria

Personalised recommendations