Cognitive Computation

, Volume 4, Issue 1, pp 4–12

From Neuroelectrodynamics to Thinking Machines

Article

Abstract

Natural systems can provide excellent solutions to build artificial intelligent systems. The brain represents the best model of computation that leads to general intelligent action. However, current mainstream models reflect a weak understanding of computations performed in the brain that is translated in a failure of building powerful thinking machines. Specifically, temporal reductionist neural models elude the complexity of information processing since spike timing models reinforce the idea of neurons that compress temporal information and that computation can be reduced to a communication of information between neurons. The active brain dynamics and neuronal data analyses reveal multiple computational levels where information is intracellularly processed in neurons. New experimental findings and theoretical approach of neuroelectrodynamics challenge current models as they now stand and advocate for a change in paradigm for bio-inspired computing machines.

Keywords

Artificial general intelligence Brain computations Machine learning Neuroelectrodynamics Neural correlates of consciousness 

References

  1. 1.
    Lloyd S. Programming the Universe: a quantum computer scientist takes on the cosmos. 1st ed. New York: Knopf; 2006.Google Scholar
  2. 2.
    Zuse K. Elektronische Datenverarbeitung. 1967; 8:336–44.Google Scholar
  3. 3.
    Schmidhuber J. Alle berechenbaren Universen, Spektrum der Wissenschaft (German edition of Scientific American), Spezial 3/07; 2007. pp. 75–9.Google Scholar
  4. 4.
    Feynman RP. Feynman lectures on computation. Perseus Books Group. ISBN 0738202967; 2000.Google Scholar
  5. 5.
    Hey Tony. Richard Feynman and computation. Contemp Phys. 1999;40(4):257–65.CrossRefGoogle Scholar
  6. 6.
    Milner R. Computing is interaction. In Proc. IFIP Congress (1); 1994. p. 232–3.Google Scholar
  7. 7.
    Wegner P. Why interaction is more powerful than algorithms. Commun ACM. 1997;40(5):80–91.CrossRefGoogle Scholar
  8. 8.
    Goldin D, Wegner P. The interactive nature of computing: refuting the strong church-Turing thesis. Minds Mach. 2008;18(1):17–38.CrossRefGoogle Scholar
  9. 9.
    Siegelmann HT. The simple dynamics of super Turing theories. Comput Sci. 1996;168:461–72.Google Scholar
  10. 10.
    McClelland JL, Rumelhart DE. Exploration in parallel distributing processing. Cambridge: Brandford Books, MIT Press; 1988.Google Scholar
  11. 11.
    Gerstner W, Kistler WM. Spiking neuron models single neurons, populations, plasticity. Cambridge, UK: Cambridge University Press; 2002.Google Scholar
  12. 12.
    Izhikevich EM. Resonate-and-fire neurons. Neural Netw. 2001;14:883–94.PubMedCrossRefGoogle Scholar
  13. 13.
    Caporale N, Dan Y. Spike timing-dependent plasticity: a Hebbian learning rule. Annu Rev Neurosci. 2008;31:25–46.PubMedCrossRefGoogle Scholar
  14. 14.
    Aur D, Jog M. Neuroelectrodynamics—understanding the brain language. Amsterdam, Netherland: IOS Press; 2010.Google Scholar
  15. 15.
    Buesing L, Maass W. A spiking neuron as information bottleneck. Neural Comput. 2010;22(8):1961–92.PubMedCrossRefGoogle Scholar
  16. 16.
    Lazar AA. Population encoding with Hodgkin-Huxley neurons. IEEE Trans Inf Theory. 2010;56:821–37.CrossRefGoogle Scholar
  17. 17.
    Ford BJ. The secret power of the single cell. The New Scientist 2010;206(2757):26–7.Google Scholar
  18. 18.
    Kung C. The physiological basis of taxes in paramecium. Ann Rev Physiol. 1982;44:519–34.CrossRefGoogle Scholar
  19. 19.
    Ford BJ. On Intelligence in Cells: the case for whole cell biology. Interdisc Sci Rev. 2009;34(4):350–65.CrossRefGoogle Scholar
  20. 20.
    Aur D, Jog MS. Building spike representation in tetrodes. J Neurosci Methods. 2006;157(2):364–73.PubMedCrossRefGoogle Scholar
  21. 21.
    Aur D, Connolly CI, Jog MS. Computing spike directivity with tetrodes. J Neurosci Methods. 2005;149(1):57–63.PubMedCrossRefGoogle Scholar
  22. 22.
    Aur D, Jog MS. Neuronal spatial learning. Neural Process Lett. 2007;25(1):31–47.CrossRefGoogle Scholar
  23. 23.
    Chalmers DJ. A computational foundation for the study of cognition (unpublished manuscript); 1997.Google Scholar
  24. 24.
    Horst S. Symbols, computation and intentionality: a critique of the computational theory of mind. Berkeley and Los Angeles: University of California Press; 1996.Google Scholar
  25. 25.
    Hameroff S, Nip A, Porter M, Tuszynski J. Conduction pathways in microtubules, biological quantum computation, and consciousness. Biosystems. 2002;64:149–68.PubMedCrossRefGoogle Scholar
  26. 26.
    Pidaparti RM, Primeaux D, Saunders B. Modeling and simulation of biological self-assembly structures from nanoscale entities. J Nanosci Nanotechnol. 2007;7(12):4248–53.PubMedCrossRefGoogle Scholar
  27. 27.
    Woolf NJ, Priel A, Tuszynski JA. Nanoscience: structural and functional roles of the neuronal cytoskeleton in health and disease. Heidelberg: Springer; 2009.Google Scholar
  28. 28.
    Poznanski RR. Towards an integrative theory of cognition. J Integr Neurosci. 2002;1:145–56.PubMedCrossRefGoogle Scholar
  29. 29.
    Craddock TJA, Tuszynski JA, Priel A, Freedman H. Microtubule ionic conduction and its implications for higher cognitive functions. J Integr Neurosci. 2010;9(2):103–22.Google Scholar
  30. 30.
    Aur D. Where is the ‘Jennifer Aniston neuron’? available from Nature Precedings. http://dx.doi.org/10.1038/npre.2010.5345.2 (2010).
  31. 31.
    Aur D, Jog M. Reading the neural code: what do spikes mean for behavior?. Available from Nature Precedings http://dx.doi.org/10.1038/npre.2007.61.1 (2007).
  32. 32.
    Levitt M, Chothia C. Structural patterns in globular proteins. Nature. 1976;261:552–8.PubMedCrossRefGoogle Scholar
  33. 33.
    Tuszynski JA, Luchko T, Carpenter EJ, Crawford E. Results of molecular dynamics computations of the structural and electrostatic properties of tubulin and their consequences for microtubules. J Comput Theor Nanosci. 2004;1(4):392–7.CrossRefGoogle Scholar
  34. 34.
    Antosiewicz J. Computation of the dipole moments of proteins. Biophys J. 1995;69(4):1344–54.PubMedCrossRefGoogle Scholar
  35. 35.
    Takashima S. Measurement and computation of the dipole moment of globular proteins III: chymotrypsin. Biophys Chem. 1996;58(1–2):13–20.PubMedCrossRefGoogle Scholar
  36. 36.
    Crick F, Koch C. Towards a neurobiological theory of consciousness. Seminars Neurosci. 1990;2:263–75.Google Scholar
  37. 37.
    He BJ, Raichle ME. The fMRI signal, slow cortical potential and consciousness. Trends Cogn Sci. 2009;13(7):302–9.PubMedCrossRefGoogle Scholar
  38. 38.
    Crick F, Koch C. A framework for consciousness. Nat Neurosci. 2003;6(2):119–26.PubMedCrossRefGoogle Scholar
  39. 39.
    Aur D. Understanding the physical mechanism of transition to epileptic seizures. J Neurosci Methods. 2011; doi:10.1016/j.jneumeth.2011.05.028.
  40. 40.
    Conrad M, Kampfner RR, Kirby KG, Rizki EN, Schleis G, Smalz R, Trenary R, Hastings HM. Towards an artificial brain. BioSystems. 1989;23(2–3):175–218.PubMedCrossRefGoogle Scholar
  41. 41.
    Voyatzis G. Chaos, order, and periodic orbits in 3:1 resonant planetary dynamics. Astrophys J. 2008;675(1):802–16.CrossRefGoogle Scholar
  42. 42.
    Aur D. The physical mechanism in epilepsy—understanding the transition to seizure submitted, available also from Nature Precedings. http://hdl.handle.net/10101/npre.2010.5398.1 (2010).
  43. 43.
    Chirikov BV. A universal instability of many-dimensional oscillator systems. Phys Rep. 1979;52(5):263–379.CrossRefGoogle Scholar
  44. 44.
    Reichl LE. The transition to chaos: conservative classical systems and quantum manifestations. New York: Springer Verlag; 2004.Google Scholar
  45. 45.
    Luo ACJ. Singularity and dynamics on discontinuous vector fields, monograph book series in nonlinear science and complexity (physics). Amsterdam: Elsevier; 2006.Google Scholar
  46. 46.
    Pereira Alfredo Jr. Astrocyte-trapped calcium ions: the hypothesis of a quantum-like conscious protectorate. Quantum Biosyst. 2007;2:80–92.Google Scholar
  47. 47.
    Balduzzi D, Tononi G. Integrated information in discrete dynamical systems: Motivation and theoretical framework. PLoS Comput Biol. 2008;4(6):e1000091.PubMedCrossRefGoogle Scholar
  48. 48.
    Tononi G. An information integration theory of consciousness. BMC Neurosci. 2004;5:42.PubMedCrossRefGoogle Scholar
  49. 49.
    McClelland JL, Rumelhart DE. Explorations in parallel distributed processing: A handbook of models, programs, and exercises. Cambridge: MIT Press; 1988.Google Scholar
  50. 50.
    Heinrich R, Schuster S. The regulation of cellular systems. New York: Chapman & Hall; 1996.CrossRefGoogle Scholar
  51. 51.
    Berthoumieux S, Brilli M, de Jong H, Kahn D, Cinquemani E. Identification of metabolic network models from incomplete high-throughput datasets. Bioinformatics. 2011;27(13):i186–95. art. no. btr225.PubMedCrossRefGoogle Scholar
  52. 52.
    Rao S, Henderson AS. Regulation of c-fos is affected by electromagnetic fields. J Cell Biochem. 1996;63(3):358–65.PubMedCrossRefGoogle Scholar
  53. 53.
    Hirai T, Yoneda Y. Transcriptional regulation of neuronal genes and its effect on neural functions: gene expression in response to static magnetism in cultured rat hippocampal neurons. J Pharmacol Sci. 2005;98(3):219–24.PubMedCrossRefGoogle Scholar
  54. 54.
    Goodman R, Blank M. Insights into electromagnetic interaction mechanisms. J Cell Physiol. 2002;192(1):16–22.PubMedCrossRefGoogle Scholar
  55. 55.
    Kandel E, Schwartz J, Jessell T. Principles of neural science. 4th ed. McGraw-Hill Medical; 2000. ISBN: 0838577016.Google Scholar
  56. 56.
    Cheetham JJ, Murray J, Ruhkalova M, Cuccia L, McAloney R, Ingold KU, Johnston LJ. Interaction of synapsin I with membranes. Biochem Biophys Res Commun. 2003;309(4):823–9.PubMedCrossRefGoogle Scholar
  57. 57.
    Haase J, Killian A-M, Magnani F, Williams C. Regulation of the serotonin transporter by interacting proteins. Biochem Soc Trans. 2001;29(6):722–8.PubMedCrossRefGoogle Scholar
  58. 58.
    Mortensen OV, Amara SG. Dynamic regulation of the dopamine transporter. Eur J Pharmacol. 2003;479(1–3):159–70.PubMedCrossRefGoogle Scholar
  59. 59.
    Wooley JC, Lin HS. Catalyzing inquiry at the interface of computing and biology, report of the National Research Council of the National Academies. Washington: National Academy Press; 2005.Google Scholar
  60. 60.
    Gibson DG, Glass JI, Lartigue C, Noskov VN, Chuang R-Y, Algire MA, Benders GA, et al. Creation of a bacterial cell controlled by a chemically synthesized genome. Science. 2010;329(5987):52–6.PubMedCrossRefGoogle Scholar
  61. 61.
    Parker AC, Joshi J, Hsu C–C, Singh NAD. A carbon nanotube, implementation of temporal and spatial dendritic computations. In: Proceedings of the 51st IEEE midwest symposium on circuits and systems. 2008; pp. 818–21, 10–13.Google Scholar
  62. 62.
    Frenkel KA. Schooling the Jeopardy! champ: far from elementary. Science. 2011;331(6020):999.CrossRefGoogle Scholar
  63. 63.
    Schrödinger E. What is life? The physical aspect of the living cell. New York: Macmillan; 1945.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Stanford UniversityPalo AltoUSA

Personalised recommendations