Cognitive Computation

, Volume 4, Issue 1, pp 38–50 | Cite as

Computational Algorithms Derived from Multiple Scales of Neocortical Processing

  • Lester IngberEmail author


A statistical mechanics of neocortical interactions of columnar activity and the vector potential of minicolumnar electromagnetic activity provide a context to explore neocortical information processes and influences on cognitive processing at multiple scales, i.e., mesoscopic (columnar scales), macroscopic (mesoscopic influences at regional scales), and microscopic (mesoscopic influences of ions affecting interactions between and among neurons and astrocytes). Even within this confined context, a case has been made that it should not be expected that the proposed Holy Grail of neuroscience, i.e., to ultimately explain all brain processing in terms of a nonlinear science at molecular scales, is at all realistic. As with many Crusades for some truths, other truths can be trampled.


Short-term memory Astrocytes Neocortical dynamics Vector potential 



I thank Alfredo Pereira Jr and Marcos Banaclocha for several discussions and for references to relevant literature on astrocyte processes. I thank Paul Nunez for several discussions on electrical and magnetic fields in neocortex.


  1. 1.
    Alexander J, Fuss B, Colello R. Electric field-induced astrocyte alignment directs neurite outgrowth. Neuron Glia Biol. 2006;2(2):93–103.PubMedCrossRefGoogle Scholar
  2. 2.
    Amzica F, Massimini M. Glial and neuronal interactions during slow wave and paroxysmal activities in the neocortex. Cerbral Cortex. 2002;12(10):1101–1113.CrossRefGoogle Scholar
  3. 3.
    Anastassiou C, Perin R, Markram H, Koch C. Ephaptic coupling of cortical neurons. Nat Neurosci. 2011;14:217–223.PubMedCrossRefGoogle Scholar
  4. 4.
    Arbib M, Amari SI. Sensori-motor transformations in the brain (with a critique of the tensor theory of cerebellum). J Theor Biol. 1985;112:123–155.PubMedCrossRefGoogle Scholar
  5. 5.
    Balduzzi D, Tononi G. Qualia: the geometry of integrated information. PLoS Comput Biol. 2009;5(8):1–24.CrossRefGoogle Scholar
  6. 6.
    Banaclocha M. Magnetic storage of information in the human cerebral cortex: a hypothesis for memory. Int J Neurosci. 2005;115(3):329–337.CrossRefGoogle Scholar
  7. 7.
    Banaclocha M. Neuromagnetic dialogue between neuronal minicolumns and astroglial network: a new approach for memory and cerebral computation. Brain Res Bull. 2007;73:21–27.PubMedCrossRefGoogle Scholar
  8. 8.
    Banaclocha M, Banaclocha H. Spontaneous neocortical activity and cognitive functions: a neuron-astroglial bio-magnetic and self-organized process. NeuroQuantology. 2010;8(2):191–199.Google Scholar
  9. 9.
    Banaclocha M, Bóokkon I, Banaclocha H. Long-term memory in brain magnetite. Med Hypotheses. 2010;74(2):254–257.PubMedCrossRefGoogle Scholar
  10. 10.
    Bellinger S. Modeling calcium wave oscillations in astrocytes. Neurocomputing. 2005;65(66):843–850.CrossRefGoogle Scholar
  11. 11.
    Buxhoeveden D, Casanova M. The minicolumn hypothesis in neuroscience. Brain. 2002;125(5):935–951. URL: Scholar
  12. 12.
    Colombo J, Reisin H, Jones M, Bentham C. Development of interlaminar astroglial processes in the cerebral cortex of control and down’s syndrome human cases. Exp Neurol. 2005;193:207–217.PubMedCrossRefGoogle Scholar
  13. 13.
    Ericsson K, Chase W. Exceptional memory. Am Scient. 1982;70:607–615.Google Scholar
  14. 14.
    Feynman R, Leighton R, Sands M. Chapter 15: The vector potential. In: The Feynman lectures on physics, vol II. Reading: Addison-Wesley. 1964; p. 1–16.Google Scholar
  15. 15.
    Georgiev D. Electric and magnetic fields inside neurons and their impact upon the cytoskeletal microtubules. Tech. Rep. Cogprints Report, Cogprints, U. Southampton, UK, 2003.
  16. 16.
    Goldberg M, De Pittá M, Volman V, Berry H, Ben-Jacob E. Nonlinear gap junctions enable long-distance propagation of pulsating calcium waves in astrocyte networks. PLoS Comput Biol. 2010;6(8):1–14.CrossRefGoogle Scholar
  17. 17.
    Gordon G, Iremonger K, Kantevari S, Ellis-Davies G, MacVicar B, Bains J. Astrocyte-mediated distributed plasticity at hypothalamic glutamate synapses. Neuron. 2009;64:391–403.PubMedCrossRefGoogle Scholar
  18. 18.
    Graham R. Covariant formulation of non-equilibrium statistical thermodynamics. Zeitschrift für Physik. 1977;B26:397–405.Google Scholar
  19. 19.
    Graham R. Path-integral methods in nonequilibrium thermodynamics and statistics. In: Garrido L, Seglar P, Shepherd P, editors. Stochastic processes in nonequilibrium systems. New York: Springer; 1978. p. 82–138.CrossRefGoogle Scholar
  20. 20.
    Grossberg S. The quantized geometry of visual space: the coherent computation of depth, form, and lightness. Behav Brain Sci. 1983;6:625–692.CrossRefGoogle Scholar
  21. 21.
    Hagan S, Hameroff R, Tuszyński J. Quantum computation in brain microtubules: decoherence and biological feasibility. Phys Rev E. 2002;65(061901):1–11.Google Scholar
  22. 22.
    Ingber L. Towards a unified brain theory. J Soc Biol Struct. 1981;4:211–224. URL: Scholar
  23. 23.
    Ingber L. Statistical mechanics of neocortical interactions. i. basic formulation. Phys D. 1982;5:83–107. URL:
  24. 24.
    Ingber L. Statistical mechanics of neocortical interactions. dynamics of synaptic modification. Phys Rev A. 1983;28:395–416. URL: Scholar
  25. 25.
    Ingber L. Statistical mechanics of neocortical interactions. derivation of short-term-memory capacity. Phys Rev A. 1984;29:3346–3358. URL:
  26. 26.
    Ingber L. Statistical mechanics of neocortical interactions. EEG dispersion relations. IEEE Trans Biomed Eng. 1985a;32:91–94. URL:
  27. 27.
    Ingber L. Statistical mechanics of neocortical interactions: Stability and duration of the 7+-2 rule of short-term-memory capacity. Phys Rev A. 1985b;31:1183–1186. URL:
  28. 28.
    Ingber L. Statistical mechanics algorithm for response to targets (SMART). In: Workshop on uncertainty and probability in artificial intelligence: UC Los Angeles, 14–16 August 1985, American Association for Artificial Intelligence, Menlo Park, CA; 1985c. p. 258–264. URL:
  29. 29.
    Ingber L. Statistical mechanics of neocortical interactions. Bull Am Phys Soc. 1986;31:868.Google Scholar
  30. 30.
    Ingber L. Statistical mechanics of neocortical interactions: a scaling paradigm applied to electroencephalography. Phys Rev A. 1991;44(6):4017–4060. URL: Scholar
  31. 31.
    Ingber L. Generic mesoscopic neural networks based on statistical mechanics of neocortical interactions. Phys Rev A. 1992;45(4):R2183–R2186. URL: Scholar
  32. 32.
    Ingber L. Adaptive simulated annealing (ASA). Tech. Rep. Global optimization C-code, Caltech Alumni Association, Pasadena, CA; 1993. URL:
  33. 33.
    Ingber L. Statistical mechanics of neocortical interactions: Path-integral evolution of short-term memory. Phys Rev E. 1994;49(5B):4652–4664. URL:
  34. 34.
    Ingber L. Statistical mechanics of multiple scales of neocortical interactions. In: Nunez P, editor. Neocortical dynamics and human EEG rhythms. New York, NY: Oxford University Press; 1995a. p. 628–681. ISBN 0-19-505728-7. URL:
  35. 35.
    Ingber L. Statistical mechanics of neocortical interactions: constraints on 40 hz models of short-term memory. Phys Rev E. 1995b;52(4):4561–4563. URL:
  36. 36.
    Ingber L. Statistical mechanics of neocortical interactions: multiple scales of EEG. In: Dasheiff R, Vincent D, editors. Frontier science in EEG: continuous waveform analysis (Electroencephalography Clinical Neurophysiology Suppl. 45). Amsterdam: Elsevier; 1996a. p. 79–112. Invited talk to Frontier Science in EEG Symposium, New Orleans, 9 Oct 1993. ISBN 0-444-82429-4. URL:
  37. 37.
    Ingber L. Nonlinear nonequilibrium nonquantum nonchaotic statistical mechanics of neocortical interactions. Behav Brain Sci. 1996b;19(2):300–301. Invited commentary on Dynamics of the brain at global and microscopic scales: Neural networks and the EEG, by J.J. Wright and D.T.J. Liley. URL:
  38. 38.
    Ingber L. Statistical mechanics of neocortical interactions: applications of canonical momenta indicators to electroencephalography. Phys Rev E. 1997;55(4):4578–4593. URL:
  39. 39.
    Ingber L. Statistical mechanics of neocortical interactions: training and testing canonical momenta indicators of EEG. Math Comput Model. 1998;27(3):33–64. URL:
  40. 40.
    Ingber L. High-resolution path-integral development of financial options. Physica A. 2000;283(3–4):529–558. URL:
  41. 41.
    Ingber L. Trading in risk dimensions (TRD). Tech. Rep. Report 2005:TRD, Lester Ingber Research, Ashland, OR, 2005. URL:
  42. 42.
    Ingber L. Ideas by statistical mechanics (ISM). Tech. Rep. Report 2006:ISM, Lester Ingber Research, Ashland, OR, 2006. URL:
  43. 43.
    Ingber L (2007) Ideas by statistical mechanics (ISM). J Integr Syst Design Process Sci 11(3):31–54, Special Issue: Biologically Inspired Computing.Google Scholar
  44. 44.
    Ingber L. AI and ideas by statistical mechanics (ISM). In: Rabuñal J, Dorado J, Pazos A, editors. Encyclopedia of artificial intelligence, information science reference, New York; 2008. p. 58–64, ISBN 978-1-59904-849-9.Google Scholar
  45. 45.
    Ingber L. Statistical mechanics of neocortical interactions: Columnar EEG. Tech. Rep. Report 2009:CEEG, Lester Ingber Research, Ashland, OR, 2009a. URL:
  46. 46.
    Ingber L. Statistical mechanics of neocortical interactions: nonlinear columnar electroencephalography. NeuroQuantol J. 2009b;7(4):500–529. URL:
  47. 47.
    Ingber L. Columnar EEG magnetic influences on molecular development of short-term memory. In: Gotsiridze-Columbus N, editor. Short-term memory: new research, Nova, Hauppauge, NY, 2012; p. (to be published), Invited Paper.Google Scholar
  48. 48.
    Ingber L, Nunez P. Multiple scales of statistical physics of neocortex: application to electroencephalography. Math Comput Model. 1990;13(7):83–95.CrossRefGoogle Scholar
  49. 49.
    Ingber L, Nunez P. Statistical mechanics of neocortical interactions: high resolution path-integral calculation of short-term memory. Phys Rev E. 1995;51(5):5074–5083. URL:
  50. 50.
    Ingber L, Nunez P. Neocortical dynamics at multiple scales: Eeg standing waves, statistical mechanics, and physical analogs. Math Biosci. 2010;229:160–173. doi: 10.1016/j.mbs.2010.12.003.
  51. 51.
    Ingber L, Fujio H, Wehner M. Mathematical comparison of combat computer models to exercise data. Math Comput Model. 1991;15(1):65–90, URL:
  52. 52.
    Ingber L, Chen C, Mondescu R, Muzzall D, Renedo M. Probability tree algorithm for general diffusion processes. Phys Rev E. 2001;64(5):056,702–056,707. URL: Scholar
  53. 53.
    Irimia A, Swinney K, Wikswo J. Partial independence of bioelectric and biomagnetic field and its implications for encephalography and cardiography. Phys Rev E. 2009;79(051908):1–13.Google Scholar
  54. 54.
    Jackson J. Classical electrodynamics. New York: Wiley. 1962.Google Scholar
  55. 55.
    Jirsa V, Haken H. Field theory of electromagnetic brain activity. Phys Rev Lett. 1996;77(5):960–963.PubMedCrossRefGoogle Scholar
  56. 56.
    Johnsen S, Lohmann K. Magnetoreception in animals. Phys Today. 2008;61:29–35.CrossRefGoogle Scholar
  57. 57.
    Kominis I. Zeno is pro darwin: quantum zeno effect suppresses the dependence of radical-ion-pair reaction yields on exchange and dipolar interactions. Tech. Rep. arXiv:0908.0763v2 [quant-ph], University of Crete, Greece. 2009.Google Scholar
  58. 58.
    Langouche F, Roekaerts D, Tirapegui E. Discretization problems of functional integrals in phase space. Phys Rev D. 1979;20:419–432.CrossRefGoogle Scholar
  59. 59.
    Langouche F, Roekaerts D, Tirapegui E. Functional integration and semiclassical expansions. Dordrecht: Reidel; 1982.Google Scholar
  60. 60.
    McFadden J. Conscious electromagnetic field theory. NeuroQuantology. 2007;5(3):262–270.Google Scholar
  61. 61.
    Miller G. The magical number seven, plus or minus two. Psychol Rev. 1956;63:81–97.PubMedCrossRefGoogle Scholar
  62. 62.
    Moore C, Cao R. The hemo-neural hypothesis: on the role of blood flow in information processing. J Neurophysiol. 2008;99:2035–2047.PubMedCrossRefGoogle Scholar
  63. 63.
    Mountcastle V. An organizing principle for cerebral function: The unit module and the distributed system. In: Edelman G, Mountcastle V, editors. The mindful brain. Cambridge: Massachusetts Institute of Technology. 1978; p. 7–50.Google Scholar
  64. 64.
    Mountcastle V, Andersen R, Motter B. The influence of attentive fixation upon the excitability of the light-sensitive neurons of the posterior parietal cortex. J Neurosci. 1981;1:1218–1235.PubMedGoogle Scholar
  65. 65.
    Murakami S, Okada Y. Contributions of principal neocortical neurons to magnetoencephalography and electroencephalography signals. J Physiol. 2006;575(3):925–936.PubMedCrossRefGoogle Scholar
  66. 66.
    Nakano T, Suda T, Koujin T, Haraguchi T, Hiraoka Y. Molecular communication through gap junction channels: system design, experiments and modeling. In: Proceedings 2nd International Conference on Bio-Insprired Models of Network, Information, and Computing Systems, Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering, Budapest, Hungary; 2007.p. 139–146.Google Scholar
  67. 67.
    Naruse Y, Matani A, Miyawaki Y, Okada M. Influence of coherence between multiple cortical columns on alpha rhythm: a computational modeling study. Human Brain Mapp. 2009;31(5):703–715.CrossRefGoogle Scholar
  68. 68.
    Nunez P. Electric fields of the brain: the neurophysics of EEG. London: Oxford University Press; 1981.Google Scholar
  69. 69.
    Nunez P. Generation of human EEG rhythms by a combination of long and short-range neocortical interactions. Brain Topogr. 1989;1:199–215.PubMedCrossRefGoogle Scholar
  70. 70.
    Nunez P. Neocortical dynamics and human EEG rhythms. New York: Oxford University Press; 1995.Google Scholar
  71. 71.
    Nunez P, Srinivasan R. Electric fields of the brain: the neurophysics of EEG, 2nd Ed. London: Oxford University Press; 2006.CrossRefGoogle Scholar
  72. 72.
    Oberheim N, Takano T, Han X, He W, Lin J, Wang F, Xu Q, Wyatt J, Pilcher W, Ojemann J, Ransom B, Goldman S, Nedergaard M. Uniquely hominid features of adult human astrocytes. J Neurosci. 2009;29(10):3276–3287.PubMedCrossRefGoogle Scholar
  73. 73.
    Pereira A Jr, FURL:an F. On the role of synchrony for neuron-astrocyte interactions and perceptual conscious processing. J Biol Phys. 2009;35(4):465–480.PubMedCrossRefGoogle Scholar
  74. 74.
    Pereira A Jr, FURL:an F. Astrocytes and human cognition: modeling information integration and modulation of neuronal activity. Prog Neurobiol. 2010;92:405–420.PubMedCrossRefGoogle Scholar
  75. 75.
    Postnov D, Koreshkov R, Brazhe N, Brazhe A, Sosnovtseva O. Dynamical patterns of calcium signaling in a functional model of neuron-astrocyte networks. J Biol Phys. 2009;35:425–445.PubMedCrossRefGoogle Scholar
  76. 76.
    Rabinovich M, Varona P, Selverston A, Arbaranel H. Dynamical principles in neuroscience. Rev Modern Phys. 2006;78(4):1213–1265.CrossRefGoogle Scholar
  77. 77.
    Rakic P. Confusing cortical columns. Proc Nat Acad Sci. 2008;105(34):12,099–12,100. URL:
  78. 78.
    Reisin H, Colombo J. Considerations on the astroglial architecture and the columnar organization of the cerebral cortex. Cell Mol Neurobiol. 2002;22(5/6):633–644.PubMedCrossRefGoogle Scholar
  79. 79.
    Rodgers C, Hore P (2009) Chemical magnetoreception in birds: the radical pair mechanism. Proc Nat Acad Sci. 2009;106(2):353–360.PubMedCrossRefGoogle Scholar
  80. 80.
    Scemes E, Suadicani S, Spray D. Intercellular calcium wave communication via gap junction dependent and independent mechanisms. In: Current Topics in Membranes, vol 49. New York: Academic Press; 2000. p. 145–173Google Scholar
  81. 81.
    Schipke C, Boucsein C, Ohlemeyer C, Kirchhoff F, Kettenmann H (2002) Astrocyte ca2+ waves trigger responses in microglial cells in brain slices. FASEB J. 2002; 16:255–257.PubMedGoogle Scholar
  82. 82.
    Solov’yov I, Schulten K. Magnetoreception through cryptochrome may involve superoxide. Biophys J. 2009;96(12):4804–4813.PubMedCrossRefGoogle Scholar
  83. 83.
    Tollaksen J, Aharonov Y, Casher A, Kaufherr T, Nussinov S (2010) Quantum interference experiments, modular variables and weak measurements. New J Phys. 2010;12(013023):1–29.Google Scholar
  84. 84.
    Zhang G, Simon H. Stm capacity for chinese words and idioms: Chunking and acoustical loop hypotheses. Memory Cogn. 1985;13:193–201.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Lester Ingber ResearchAshlandUSA

Personalised recommendations