Cognitive Computation

, Volume 3, Issue 3, pp 480–489 | Cite as

Sentic Web: A New Paradigm for Managing Social Media Affective Information

  • Marco Grassi
  • Erik Cambria
  • Amir Hussain
  • Francesco Piazza


The recent success of media-sharing services caused an exponential growth of community-contributed multimedia data on the Web and hence a consistent shift of the flow of information from traditional communication channels to social media ones. Retrieving relevant information from this kind of data is getting more and more difficult, not only for their volume, but also for the different nature and formats of their contents. In this work, we introduce Sentic Web, a new paradigm for the management of social media affective information, which exploits AI and Semantic Web techniques to extract, encode, and represent opinions and sentiments over the Web. In particular, the computational layer consists in an intelligent engine for the inference of emotions from text, the representation layer is developed on the base of specific domain ontologies, and the application layer is based on the faceted browsing paradigm to make contents available as an interconnected knowledge base.


Sentic computing AI Semantic web Ontologies NLP Emotion and affective UI 



This work was undertaken during the first author’s research visit to Sitekit Labs and partly funded with the aid of a COST 2102 Short Term Scientific Mission.


  1. 1.
    Hendler J, Shadbolt N, Hall W, Berners-Lee T, Weitzner D. Web science: an interdisciplinary approach to understanding the world wide web. Comm ACM 2008;51(7):60–69.CrossRefGoogle Scholar
  2. 2.
    Cambria E, Hussain A, Havasi C, Eckl C. Sentic computing: exploitation of common sense for the development of emotion-sensitive systems. LNCS, vol. 5967. Berlin: Springer; 2010. pp. 148–156.Google Scholar
  3. 3.
    Grassi M. Developing HEO human emotion ontology. LNCS, vol. 5707. Berlin: Springer; 2009. pp. 244–251.Google Scholar
  4. 4.
  5. 5.
  6. 6.
  7. 7.
    Evolve24 –
  8. 8.
    Pang B, Lee L, Vaithyanathan S. Thumbs up? Sentiment classification using machine learning techniques. In: EMNLP, Philadelphia 2002.Google Scholar
  9. 9.
    Sood S, Owsley S, Hammond K, Birnbaum L. Reasoning through search: a novel approach to sentiment classification. Northwestern University Tech Report Number NWU-EECS-07-05 2007.Google Scholar
  10. 10.
    Turney P. Thumbs up or thumbs down? Semantic orientation applied to unsupervised classification of reviews. In: ACL, Philadelphia 2002.Google Scholar
  11. 11.
    Alm C, Roth D, Sproat R. Emotions from text: machine learning for text-based emotion prediction. In: HLT/EMNLP, Vancouver 2005.Google Scholar
  12. 12.
    Pang B, Lee L. A sentimental education: sentiment analysis using subjectivity summarization based on minimum cuts. In: ACL, Barcelona 2004.Google Scholar
  13. 13.
    Sood S, Vasserman L. Esse: exploring mood on the web. In: ICWSM, Seattle 2009.Google Scholar
  14. 14.
    Antoniou G, Van Harmelen F. A semantic web primer. Cambridge: Mit Press; 2004.Google Scholar
  15. 15.
    Cambria E, Hussain A, Havasi C, Eckl C. Common sense computing: from the society of mind to digital intuition and beyond. LNCS, vol. 5707. Berlin: Springer 2009. pp. 252–259.Google Scholar
  16. 16.
    Cambria E, Hussain A, Havasi C, Eckl C. AffectiveSpace: blending common sense and affective knowledge to perform emotive reasoning. In: WOMSA at CAEPIA, Seville 2009.Google Scholar
  17. 17.
    Havasi C, Speer R, Alonso J. ConceptNet 3: a flexible, multilingual semantic network for common sense knowledge. In: RANLP, Borovets 2007.Google Scholar
  18. 18.
    Strapparava C, Valitutti A. WordNet-Affect: an affective extension of WordNet. In: LREC, Lisbon 2004.Google Scholar
  19. 19.
    Cambria E, Hussain A, Havasi C, Eckl C. SenticSpace: visualizing opinions and sentiments in a multi-dimensional vector space. LNAI, vol. 6279. Berlin: Springer; 2010. pp. 385–393.Google Scholar
  20. 20.
    Plutchik R. The nature of emotions. Am Scient 2001;89(4):344–350.Google Scholar
  21. 21.
    Minsky M: The emotion machine. New York: Simon and Schuster; 2006.Google Scholar
  22. 22.
    The Humaine Project –
  23. 23.
    COST Action 2102: Cross-Modal Analysis of Verbal and Non-Verbal Communication –
  24. 24.
    W3C Emotion Markup Language –
  25. 25.
    Ontology for Media Resource –
  26. 26.
    Friend of a Friend Project – http://foaf-project.or.
  27. 27.
  28. 28.
    Cheng X, Dale C, Liu J. Statistics and Social Network of YouTube Videos. In: IEEE IWQoS, Enschede 2008.Google Scholar
  29. 29.
    SIMILE Exhibit API –
  30. 30.
  31. 31.
    LiveJournal –

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Marco Grassi
    • 1
  • Erik Cambria
    • 2
  • Amir Hussain
    • 2
  • Francesco Piazza
    • 1
  1. 1.Department of Biomedical, Electronic and Telecommunication EngineeringUniversità Politecnica delle MarcheAnconaItaly
  2. 2.Department of Computing Science and MathematicsUniversity of StirlingStirlingUK

Personalised recommendations